Citation: ZHAN Hao, ZHANG Xiao-hong, SONG Yan-pei, YIN Xiu-li, WU Chuang-zhi. Formation characteristics of NOx precursors during gasification of N-rich biomass[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 34-44. shu

Formation characteristics of NOx precursors during gasification of N-rich biomass

  • Corresponding author: WU Chuang-zhi, wucz@ms.giec.ac.cn
  • Received Date: 17 May 2017
    Revised Date: 4 August 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (51676195, 51661145022)the National Natural Science Foundation of China 51661145022the National Natural Science Foundation of China 51676195

Figures(10)

  • Based on gasification of 4 N-rich biomass (SBS, RS, CS and MDF) in a horizontal tubular quartz reactor, formation characteristics of NOx precursors were investigated with the help of chemical absorption-spectrophotometry and XPS methods. Effects of fuel's properties (nitrogen functionality and nitrogen content) and gasification conditions (temperature and gasifying agent) were discussed and compared. The results indicate that NH3-N is the predominant NOx precursor species mainly produced during devolatilization stage. Each operational factor would alter the yield of each NOx precursor by affecting their formation pathways. On one hand, thermal stability of nitrogen functionality in fuels (N-A) is a much more important factor than nitrogen content among fuel's properties. Subsequently, due to the primary cracking of unstable N-A (polyamide), total yield of NOx precursors for MDF reaches up to 74.7% which is higher than that for other straw biomass by 15%. On the other hand, gasification conditions would influence the reaction routes relevant to NOx precursors during secondary reactions, especially for the hydrogenation reaction. As a consequence, during SBS gasification, when temperature rises from 800 to 1000℃, NH3-N yield keeps a constant increase from 38.9% to 47.7% while HCN-N increases first and then decreases with a peak value of 18.3%, which may depend on the balance between reaction routes affected by temperature. As for gasifying agent, the presence of CO2 would partly inhibit HCN-N yield while the introduction of H2O would moderately promote NH3-N yield, which is attributed that the hydrogenation reaction would be strongly affected by gasifying agent. Hence, it is concluded that the selectivity and partitioning of NOx precursors could be changed by employing different ratio of gasifying agents.
  • 加载中
    1. [1]

      MCKENDRY P. Energy production from biomass (part 3):Gasification technologies[J]. Bioresource Technol, 2002,83(1):55-63. doi: 10.1016/S0960-8524(01)00120-1

    2. [2]

      GAO Xiang. Analysis on comprehensive utilization technique of crop straw in Jiangsu province[J]. Acta Agric Jiangxi, 2010(12):130-133, 140. doi: 10.3969/j.issn.1001-8581.2010.12.040

    3. [3]

      LV X, XIAO J, SHEN L, ZHOU Y. Experimental study on the optimization of parameters during biomass pyrolysis and char gasification for hydrogen-rich gas[J]. Int J Hydrog Energy, 2016,41(47):21913-21925. doi: 10.1016/j.ijhydene.2016.09.200

    4. [4]

      TCHOFFOR P A, MORADIAN F, PETTERSSON A, DAVIDSSON K O, THUNMAN H. Influence of fuel ash characteristics on the release of potassium, chlorine, and sulfur from biomass fuels under steam-fluidized bed gasification conditions[J]. Energy Fuels, 2016,30(12):10435-10442. doi: 10.1021/acs.energyfuels.6b01470

    5. [5]

      FEI Hua, LI Pei-sheng, SUN Jin-cong, ZHANG Ying, LUO Kai, ZHANG Hong-ying. Kinetics of two straw biomass chars gasification with CO2 based a modified discrete random pore model[J]. Proc CSEE, 2016,36(9):2459-2464.  

    6. [6]

      WEI J, GONG Y, GUO Q, DING L, WANG F, YU G. Physicochemical evolution during rice straw and coal co-pyrolysis and its effect on co-gasification reactivity[J]. Bioresour Technol, 2017,227:345-352. doi: 10.1016/j.biortech.2016.12.068

    7. [7]

      ALI D A, GADALLA M A, ABDELAZIZ O Y, HULTEBERG C P, ASHOUR F H. Co-gasification of coal and biomass wastes in an entrained flow gasifier:Modelling, simulation and integration opportunities[J]. J Nat Gas Sci Eng, 2017,37:126-137. doi: 10.1016/j.jngse.2016.11.044

    8. [8]

      ZHOU J C, MASUTANI S M, ISHIMURA D M, TURN S Q, KINOSHITA C M. Release of fuel-bound nitrogen during biomass gasification[J]. Ind Eng Chem Res, 2000,39(3):626-634. doi: 10.1021/ie980318o

    9. [9]

      WILK V, HOFBAUER H. Conversion of fuel nitrogen in a dual fluidized bed steam gasifier[J]. Fuel, 2013,106:793-801. doi: 10.1016/j.fuel.2012.12.056

    10. [10]

      AZNAR M, ANSELMO M S, MANYA J J, MURILLO M B. Experimental study examining the evolution of nitrogen compounds during the gasification of dried sewage sludge[J]. Energy Fuels, 2009,23:3236-3245. doi: 10.1021/ef801108s

    11. [11]

      CAO J J, SHEN Z X, CHOW J C, WATSON J G, LEE S C, TIE X X, HO K F, WANG G H, HAN Y M. Winter and summer PM2.5 chemical compositions in fourteen chinese cities[J]. J Air Waste Manage, 2012,62(10):1214-1226. doi: 10.1080/10962247.2012.701193

    12. [12]

      TIAN F J, YU J L, MCKENZIE L J, HAYASHI J I, CHIBA T, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VⅡ. Pyrolysis and gasification of cane trash with steam[J]. Fuel, 2005,84(4):371-376. doi: 10.1016/j.fuel.2004.09.018

    13. [13]

      PATERSON N, ZHUO Y, DUGWELL D, KANDIYOTI R. Formation of hydrogen cyanide and ammonia during the gasification of sewage sludge and bituminous coal[J]. Energy Fuels, 2005,19(3):1016-1022. doi: 10.1021/ef049688h

    14. [14]

      LIU H, GIBBS B M. Modeling NH3 and HCN emissions from biomass circulating fluidized bed gasifiers[J]. Fuel, 2003,82(13):1591-1604. doi: 10.1016/S0016-2361(03)00091-7

    15. [15]

      ALJBOUR S H, KAWAMOTO K. Bench-scale gasification of cedar wood-Part Ⅱ:Effect of operational conditions on contaminant release[J]. Chemosphere, 2013,90(4):1501-1507. doi: 10.1016/j.chemosphere.2012.08.030

    16. [16]

      BROER K M, BROWN R C. Effect of equivalence ratio on partitioning of nitrogen during biomass gasification[J]. Energy Fuels, 2016,30(1):407-413. doi: 10.1021/acs.energyfuels.5b02197

    17. [17]

      REN Q, ZHAO C, WU X, LIANG C, CHEN X, SHEN J, WANG Z. Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2[J]. Fuel, 2010,89(5):1064-1069. doi: 10.1016/j.fuel.2009.12.001

    18. [18]

      TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam:A comparative study of coal and biomass[J]. Energy Fuels, 2007,21(2):517-521. doi: 10.1021/ef060415r

    19. [19]

      REN Q Q, ZHAO C S. NOx and N2O precursors from biomass pyrolysis:Nitrogen transformation from amino acid[J]. Environ Sci Technol, 2012,46(7):4236-4240. doi: 10.1021/es204142e

    20. [20]

      STUBENBERGER G, SCHARLER R, ZAHIROVIC S, OBERNBERGER I. Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models[J]. Fuel, 2008,87(6):793-806. doi: 10.1016/j.fuel.2007.05.034

    21. [21]

      CHEN Shu-ren, JIANG Cheng-chong, YAO Yong, JIANG Xiao-xia. Establishment of predicted model of calorific value for rice strawbriquetting and analysis of correlation of its influencing factors[J]. Trans Chin Soc Agric Eng, 2014,30(24):200-208. doi: 10.3969/j.issn.1002-6819.2014.24.024

    22. [22]

      ZHANG Fa-an, ZHANG Jian-hui. Environmental protection measures to be used in MDF enterprises[J]. Chin Forest Prod Ind, 2012,39(2):35-37, 40.  

    23. [23]

      ZHANG Xiao-hong, ZHAN Hao, YIN Xiu-li, WU Chuang-zhi. Release characteristic of NOx precursors during the pyrolysis of nitrogen-rich biomass[J]. J Fuel Chem Technol, 2016,44(12):1464-1472. doi: 10.3969/j.issn.0253-2409.2016.12.008 

    24. [24]

      ZHAN H, YIN X L, HUANG Y Q, ZHANG X H, YUAN H Y, XIE J J, WU C Z. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. J Fuel Chem Technol, 2017,45(3):279-288. doi: 10.1016/S1872-5813(17)30017-8

    25. [25]

      VALENTIM B, GUEDES A, BOAVIDA D. Nitrogen functionality in "oil window" rank range vitrinite rich coals and chars[J]. Org Geochem, 2012,42(5):502-509.  

    26. [26]

      WEI L H, WEN L, YANG T H, ZHANG N. Nitrogen transformation during sewage sludge pyrolysis[J]. Energy Fuels, 2015,29(8):5088-5094. doi: 10.1021/acs.energyfuels.5b00792

    27. [27]

      ZHAN H, YIN X L, HUANG Y Q, YUAN H Y, WU C Z. NOx precursors evolving during rapid pyrolysis of lignocellulosic industrial biomass wastes[J]. Fuel, 2017,207:438-448. doi: 10.1016/j.fuel.2017.06.046

    28. [28]

      YU Q Z, BRAGE C, CHEN G X, SJOSTROM K. The fate of fuel-nitrogen during gasification of biomass in a pressurised fluidised bed gasifier[J]. Fuel, 2007,86(4):611-618. doi: 10.1016/j.fuel.2006.08.007

    29. [29]

      REN Q Q. NOx and N2O precursors from co-pyrolysis of biomass and sludge[J]. J Therm Anal Calorim, 2013,112(2):997-1002. doi: 10.1007/s10973-012-2645-3

    30. [30]

      LIU Hai-ming, ZHANG Jun-ying, ZHENG Chu-guang, MENG Yun. Quantum chemical study of the pyrolysis stability of pyrrolic nitrogen and pyridinic nitrogen in coal[J]. J Huazhong Univ Sci Technol:Nat Sci Ed, 2004,32(11):13-15.  

    31. [31]

      VERMEULEN I, BLOCK C, VANDECASTEELE C. Estimation of fuel-nitrogen oxide emissions from the element composition of the solid or waste fuel[J]. Fuel, 2012,94(1):75-80.  

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    3. [3]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    4. [4]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    5. [5]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    6. [6]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    8. [8]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    14. [14]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    15. [15]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    18. [18]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    19. [19]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    20. [20]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

Metrics
  • PDF Downloads(6)
  • Abstract views(1013)
  • HTML views(188)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return