Citation: Xu Yeming, Zheng Chuanming, Zhang Yunhong. Application Prospect of Ammonia Energy as Clean Energy[J]. Chemistry, ;2019, 82(3): 214-220. shu

Application Prospect of Ammonia Energy as Clean Energy

  • Corresponding author: Zhang Yunhong, yhz@bit.edu.cn
  • Received Date: 31 October 2018
    Accepted Date: 26 November 2018

Figures(1)

  • Synthetic ammonia is a low-cost chemical material. It is a novel clean energy with broad application prospects and possesses high energy density and octane value, convenient conditions for storage and transportation, and combustion without CO2 emissions. Ammonia can replace gasoline, diesel and other fossil fuels and supply clean fuel for automotive engines, moreover, it can provide hydrogen energy for vehicle fuel cells through catalytic decomposition. Being the ideal alternative to traditional petroleum fuels, ammonia offers another fuel choice for solving the problems of environmental pollution and energy shortage. This paper mainly focuses on the advantages and maneuverability of ammonia used as engine fuel and fuel cell raw material in automotive power source, and the related research progress at home and abroad. The research progress and limitation of the catalytic system for ammonia decomposition and the research status of synthetic ammonia were introduced.
  • 加载中
    1. [1]

      A Züttel, A Remhof, A Borgschulte et al. Philos T. R. Soc. A, 2010, 368 (1923):3329~3342. 

    2. [2]

       

    3. [3]

       

    4. [4]

      A Afif, N Radenahmad, Q Cheok. Renew. Sust. Energ. Rev., 2016, 60:822~835. 

    5. [5]

      C Zamfirescu, I Dincer. J. Power Sources, 2008, 185 (1):459~465. 

    6. [6]

      A Klerke, C H Christensen, J K Nørskov. J. Mater. Chem., 2008, 18(20):2304~2310. 

    7. [7]

       

    8. [8]

    9. [9]

      D Miura, T Tezuka. Energy, 2014, 68(4):428~436.

    10. [10]

      C S Mørch, A Bjerre, M P Gøttrup et al. Fuel, 2011, 90(2):854~864. 

    11. [11]

       

    12. [12]

       

    13. [13]

      A J Reiter, S C Kong. Energ Fuel, 2008, 22(5):2963~2971. 

    14. [14]

      R Liu, D S Ting, M D Checkel. SAE Paper, 2003-01-3095.

    15. [15]

      K H Ryu, G Zacharakis-Jutz, S C Kong. SAE Paper, 2013-01-1133.

    16. [16]

      K H Ryu, G E Zacharakis. Appl. Energ., 2014, 116(3):206~215.

    17. [17]

      M Comotti, S Frigo. Int. J. Hydrogen Energ, 2015, 40(33):10673~10686. 

    18. [18]

      K H Ryu, G E Zacharakis-Jutz, S C Kong. Int. J. Hydrogen Energ, 2014, 39(5):2390~2398. 

    19. [19]

    20. [20]

      C W Gross, S C Kong. Fuel, 2013, 103:1069~1079. 

    21. [21]

    22. [22]

      M I Lamas, C G Rodriguez. Int. J. Hydrogen Energ, 2017, 42(41):26132~26141. 

    23. [23]

       

    24. [24]

      N J J Dekker, G Rietveld. J. Fuel Cell Sci. Tech., 2006, 3(4):499~502. 

    25. [25]

       

    26. [26]

       

    27. [27]

       

    28. [28]

      N M Adli, H Zhang, S Mukherjee et al. J. Electrochem. Soc., 2018, 165 (15):3130~3147. 

    29. [29]

      A Fuertea, R X Valenzuelaa, M J Escudero et al. J. Power Sources, 2009, 192 (1):170~174. 

    30. [30]

    31. [31]

    32. [32]

      R Lan, S Tao. Front. Energy Res., 2014, 2:35.

    33. [33]

      A Wojcik, H Middleton, I Damopoulos et al. J. Power Sources, 2003, 118 (1-2):342~348. 

    34. [34]

      C G Vayenas, R D Farr. Science, 1980, 208(4444):593~594. 

    35. [35]

       

    36. [36]

      M Ni, M K H Leung, D Y C Leung. Int. J. Energy Res., 2009, 33(11):943~959. 

    37. [37]

       

    38. [38]

      S E Gay, M Ehsani. SAE Paper, 2003-01-2251.

    39. [39]

       

    40. [40]

      K Okura, T Okanishi, H Muroyama et al. ChemCatChem, 2016, 8(18):2988~2995. 

    41. [41]

    42. [42]

      G Lanzaniab, K Laasonen. Int. J. Hydrogen, 2010, 35(13):6571~6577. 

    43. [43]

       

    44. [44]

      X Z Duan, J H Zhou, G Qian et al. Chin. J. Catal., 2010, 31(8):979~986. 

    45. [45]

       

    46. [46]

      S F Yin, B Q Xu, X P Zhou et al. Appl. Catal. A, 2006, 301(24):202~210.

    47. [47]

      G Papapolymerou, V Bontozoglou. J. Mol. Catal. A, 1997, 120(1-3):165~171. 

    48. [48]

      S F Yin, B Q Xu, W X Zhu et al. Catal. Today, 2004, 93~95:27~38.

    49. [49]

      J C Ganley, F S Thomas, E G Seebauer et al. Catal. Lett., 2004, 96(3-4):117~122.

    50. [50]

      J L Cao, Z L Yan, Q F Deng et al. Catal. Sci. Technol., 2014, 4(2):361~368. 

    51. [51]

      J L Cao, Z L Yan, Q F Deng et al. Int. J. Hydrogen, 2014, 39(11):5747~5755. 

    52. [52]

      X Duan, J Ji, G Qian et al. J. Mol. Catal. A, 2012, 357:81~86. 

    53. [53]

       

    54. [54]

      S Wiser, E J Markel. J. Catal., 1994, 145(2):335~343. 

    55. [55]

       

    56. [56]

      W Q Zheng, J Zhang, Q J Ge et al. Appl. Catal. B, 2008, 80(1):98~105.

    57. [57]

       

    58. [58]

      S J Wang, S F Yin, B Q Xu et al. Appl. Catal. B, 2004, 52(4):287~299. 

    59. [59]

      S F Yin, B Xu, S Wang et al. Catal. Lett., 2004, 96(3):113~116.

    60. [60]

       

    61. [61]

       

    62. [62]

    63. [63]

      F Bozso, G Ertl, M Grunze et al. Appl. Surf. Sci., 1977, 1(1):103~119. 

    64. [64]

       

    65. [65]

       

    66. [66]

  • 加载中
    1. [1]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    2. [2]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    3. [3]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    4. [4]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    5. [5]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    6. [6]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    7. [7]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    8. [8]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    9. [9]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    10. [10]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    15. [15]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    16. [16]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    17. [17]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

Metrics
  • PDF Downloads(127)
  • Abstract views(3517)
  • HTML views(1551)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return