Citation: Li Junyi, Liang Feng, Tian Liang, Zhang Haijun. Progress in Preparation Method of g-C3N4 Nanosheets[J]. Chemistry, ;2018, 81(5): 387-393. shu

Progress in Preparation Method of g-C3N4 Nanosheets

  • Corresponding author: Zhang Haijun, zhanghaijun@wust.edu.cn
  • Received Date: 7 November 2017
    Accepted Date: 14 February 2018

Figures(9)

  • As a kind of metal-free sp2 conjugated polymer semiconductor, g-C3N4 nanosheets have a wide range of application in the fields of photoelectrochemistry, catalysis, photocatalysis, biomedicine and so on. This paper reviews the recent study on the preparation of two-dimensional g-C3N4 nanosheets. The advantages and disadvantages of different methods for preparation of g-C3N4 nanosheets are summarized. Finally, the prospects for future investigations of two-dimensional g-C3N4 nanosheets are proposed.
  • 加载中
    1. [1]

      Y Wang, X Wang, M Antonietti. Angew. Chem. Int.Ed., 2012, 51(1):68~89. 

    2. [2]

      G Mamba, A K Mishra. Appl. Catal. B, 2016, 198:347~377. 

    3. [3]

      W J Ong, L L Tan, H N Yun et et al. Chem. Rev., 2016, 116(12):7159~7329. 

    4. [4]

      L Liu, J Wang, C Wang et et al. Appl. Surf. Sci., 2016, 390:303~310. 

    5. [5]

      J Zhang, Y Chen, X Wang. Energy Environ. Sci., 2015, 8(11):3092~3108. 

    6. [6]

      X Cai, J Zhang, M Fujitsuka et et al. Appl. Catal. B, 2017, 202:191~198. 

    7. [7]

      X She, J Wu, H Xu et et al. Appl. Catal. B, 2016, 202:112~117. 

    8. [8]

      P Niu, L Zhang, G Liu et et al. Adv. Funct. Mater., 2012, 22(22):4763~4770. 

    9. [9]

      Z Li, Y Wu, G Lu. Appl. Catal. B, 2016, 188:56~64. 

    10. [10]

      X Zhang, X Xie, H Wang et et al. J. Am. Chem. Soc., 2013, 135(1):18~21. 

    11. [11]

      K Schwinghammer, M B Mesch, V Duppel et et al. J. Am. Chem. Soc., 2014, 136(5):1730~1733. 

    12. [12]

      H Zhang, L H Guo, L Zhao et et al. J. Phys. Chem. Lett., 2015, 6(6):958~963. 

    13. [13]

      J Tian, Q Liu, A M Asiri et et al. Nanoscale, 2013, 5(23):11604~11609. 

    14. [14]

      J Tian, Q Liu, C Ge et et al. Nanoscale, 2013, 5(19):8921~8924. 

    15. [15]

      J Tian, Q Liu, A M Asiri et et al. Anal. Chem., 2013, 85(11):5595~5599. 

    16. [16]

      N Cheng, J Tian, Q Liu et et al. ACS Appl. Mater. Interf., 2013, 5(15):6815~6819. 

    17. [17]

      W Ma, D Han, M Zhou et et al. Chem. Sci., 2014, 5(10):3946~3951. 

    18. [18]

      Q Lin, L Li, S Liang et et al. Appl. Catal. B, 2015, 163(163):135~142.

    19. [19]

      S Yang, Y Gong, J Zhang et et al. Adv. Mater., 2013, 25(17):2452~2456. 

    20. [20]

      L Ma, H Fan, M Li et et al. J. Mater. Chem. A, 2015, 3(44):22404~22412. 

    21. [21]

      Y Yin, J Han, X Zhang et et al. RSC Adv., 2014, 4(62):32690~32697. 

    22. [22]

      L Ma, H Fan, J Wang et et al. Appl. Catal. B, 2016, 190:93~102. 

    23. [23]

      J Tong, L Zhang, F Li et et al. RSC Adv., 2015, 5(107):88149~88153. 

    24. [24]

      Z Zhou, J Wang, J Yu et et al. J. Am. Chem. Soc., 2015, 137(6):2179~2182. 

    25. [25]

      Y Ma, E Liu, X Hu et et al. Appl. Surf. Sci., 2015, 358:246~251. 

    26. [26]

      R J Ran, T Y Ma, G Gao et et al. Energy Environ. Sci., 2015, 8(12):3708~3717. 

    27. [27]

      Y Li, R Jin, X Fang et et al. J. Hazard. Mater., 2016, 313:219~228. 

    28. [28]

      G Liu, T Wang, H Zhang et et al. Angew. Chem. Int. Ed., 2015, 54(46):13561~13565. 

    29. [29]

      J Xu, L Zhang, R Shi et et al. J. Mater. Chem. A, 2013, 1(46):14766~14772. 

    30. [30]

      J Z Jiang, O Y Lei, L H Zhu et et al. Carbon, 2014, 80:213~221. 

    31. [31]

      F Cheng, H Wang, X Dong. Chem. Commun., 2015, 51(33):7176~7179. 

    32. [32]

      P Niu, L Zhang, G Liu et et al. Adv. Funct. Mater., 2012, 22(22):4763~4770. 

    33. [33]

      F Dong, Y Li, Z Wang et et al. Appl. Surf. Sci., 2015, 358:393~403. 

    34. [34]

      H Xu, J Yan, X She et et al. Nanoscale, 2014, 6(3):1406~1415. 

    35. [35]

      L Lin, Z Cong, J Li et et al. J. Mater. Chem. B, 2014, 2:1031~1037. 

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    3. [3]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    8. [8]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    9. [9]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    10. [10]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    11. [11]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    12. [12]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    13. [13]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    15. [15]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    19. [19]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    20. [20]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

Metrics
  • PDF Downloads(66)
  • Abstract views(3977)
  • HTML views(1827)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return