Citation: CUI Li-ping, WANG Cheng-xiong, ZHAO Yun-kun, LI Zhong, YANG Dong-hua. Synthesis of core-shell structured MFI-type composite zeolites by isomorphous epitaxial growth[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1145-1152. shu

Synthesis of core-shell structured MFI-type composite zeolites by isomorphous epitaxial growth

  • Corresponding author: LI Zhong, lizhong@tyut.edu.cn
  • Received Date: 3 March 2016
    Revised Date: 12 June 2016

    Fund Project: the Science and Technology Infrastructure Platform Construction Program of Shanxi Province 2015091009

Figures(9)

  • MFI/MFI core-shell composite zeolites with a low-silica ZSM-5 core and a high-silica shell were successfully synthesized by secondary hydrothermal crystallization on the low-silica ZSM-5 cores that was pretreated with a basic TPAOH aqueous solution; the preparation parameters for shell growth including the pH value, water amount, and crystallization time were well considered. The crystal structure, surface morphology, core/shell interface, textural properties and surface acidity of the resultant core-shell zeolites were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, transmission electron microscopy, N2 physisorption and NH3 temperature programmed desorption. The results indicated that in the core-shell composite zeolites, high-silica ZSM-5 shell with a particle size of 200 nm is well developed on the surface of core crystal. The growth of ZSM-5 shell results in an increase of external surface area, decrease of external acid density and increase of weak acid sites without influencing pore structure. The isomorphous epitaxial growth of high-silica ZSM-5 shells can be effectively controlled under the conditions of a pH value of 8.5, H2O/SiO2 mol ratio of 30 and crystallization for 24 h during the secondary crystallization.
  • 加载中
    1. [1]

      OKAMOTO M, OSAFUNE Y. MFI-type zeolite with a core-shell structure with minimal defects synthesized by crystal overgrowth of aluminum-free MFI-type zeolite on aluminum-containing zeolite and its catalytic performance[J]. Microporous Mesoporous Mater, 2011,143(2/3):413-418.  

    2. [2]

      ZHANG Pei-shan, MA Bo, YANG Wei-ya, LING Feng-xiang, SHEN Zhi-qi, WANG Shao-jun, HOU Yu-xin. Synthesis and characterization of core-shell Beta/MCM-22 micro-microporous composite zeolites[J]. J Fuel Chem Technol, 2014,42(10):1240-1245.  

    3. [3]

      LI K H, VALLA J, GARCIA-MARTINEZ J. Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking[J]. ChemCatChem, 2014,6(1):46-66. doi: 10.1002/cctc.v6.1

    4. [4]

      GORA L, SULIKOWSKI B, SERWICKA E M. Formation of structured silicalite-1/ZSM-5 composites by a self-assembly process[J]. Appl Catal A: Gen, 2007,325(2):316-321. doi: 10.1016/j.apcata.2007.02.047

    5. [5]

      BOUIZI Y, ROULEAU L, VALTCHEV V P. Factors controlling the formation of core-shell zeolite-zeolite composites[J]. Chem Mater, 2006,18:4959-4966. doi: 10.1021/cm0611744

    6. [6]

      VU D V, MIYAMOTO M, NISHIYAMA N, ICHIKAWAB S, EGASHIRAA Y, UEYAMA K. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites[J]. Microporous Mesoporous Mater, 2008,115(1/2):106-112.  

    7. [7]

      ZHAN Y Z, LI X X, ZHANG Y G, HAN L, CHEN Y L. Phase and morphology control of LTA/FAU zeolites by adding trace amounts ofinorganicions[J]. Ceram Int, 2013,39(5):5997-6003. doi: 10.1016/j.ceramint.2013.01.005

    8. [8]

      KONG D J, ZHENG J L, YUAN X H, WANG Y D, FANG D Y. Fabrication of core/shell structure via overgrowth of ZSM-5 layers on mordenite crystals[J]. Microporous Mesoporous Mater, 2009,119(1/2/3):91-96.  

    9. [9]

      ROLLMANN L D. ZSM-5 containing aluminum-free shells on its surface: US, 4088605[P]. 1978-05-09.

    10. [10]

      KONG De-jin, ZOU Wei, TONG Wei-yi, FANG Ding-ye. Synthesis and catalytic behaviors of MFI/MFI core-shell zeolite[J]. Acta Chim Sin, 2009,67(15):1765-1770.

    11. [11]

      LIN Y S, DUKE M C. Recent progress in polycrystalline zeolite membrane research[J]. Curr Opin Chem Eng, 2013,2(2):209-216. doi: 10.1016/j.coche.2013.03.002

    12. [12]

      LI Q H, WANG Z, HEDLND J, CREASER D, ZHANG H, ZOU Y D, BONS A J. Synthesis and characterization of colloidal zoned MFI crystals[J]. Microporous Mesporous Mater, 2005,78(1):1-10. doi: 10.1016/j.micromeso.2004.09.010

    13. [13]

      GUO Y P, WANG H J, GUO Y J, GUO L H, CHU L F, GUO C X. Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives[J]. Chem Eng J, 2011,166(1):391-400. doi: 10.1016/j.cej.2010.10.057

    14. [14]

      GROEN J C, PEFFER L A A, MOULIJIN J A, PÉREZ-RAMÍREZ J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J]. Colloids Surf A, 2013,241(1/2/3):53-58.  

    15. [15]

      VU D V, MIYAMOTO M, NISHIYAMA N, EGASHIRA Y, UEYAMA K. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals[J]. J Catal, 2006,243(2):389-394. doi: 10.1016/j.jcat.2006.07.028

    16. [16]

      GROEN J C, JANSEN J C, MOULIJIN J A, PÉREZ-RAMÍREZ J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. J Phys Chem B, 2004,108:13062-13065. doi: 10.1021/jp047194f

    17. [17]

      DONK S V, JANSSEN A H, BITTER J H, JONG K P. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catal Rev, 2003,45:297-319. doi: 10.1081/CR-120023908

    18. [18]

      CHANG C D, BELL A T. Studies on the mechanism of ZSM-5 formation[J]. Catal Lett, 1991,8(5):305-316.  

    19. [19]

      NAGY J B, BODART P, COLLECTTE H, FERNANDEZ C, GABELICA Z, NASTRO A, AIELLO R. Characterization of crystalline and amorphous phases during the synthesis of (TPA, M)-ZSM-5 zeolites (M=Li, Na, K)[J]. J Chem Soc, Faraday Trans, 1989,185:2749-2769.

    20. [20]

      DAI C Y, ZHANG A F, LI L L, HOU K K, DING F S, LI J, MU D Y, SONG C S, LIU M, GUO X W. Synthesis of hollow nanocubes and macroporous monoliths of silicalite-1 by alkaline treatment[J]. Chem Mater, 2013,25(21):4197-4205. doi: 10.1021/cm401739e

    21. [21]

      YAN Y, CHAUDHURI S R, SARKAR A. Synthesis of oriented zeolite molecular sieve films with controlled morphologies[J]. Chem Mater, 1996,8:473-479. doi: 10.1021/cm950393e

    22. [22]

      JUNG J S, PARK J W, SEO G. Catalytic cracking of n-octane over alkali-treated MFI zeolite[J]. Appl Catal A: Gen, 2005,288(1/2):149-157.

    23. [23]

      GROEN J C, PÉREZ-RAMÍREZ J. Critical appraisal of mesopore characterization by adsorption analysis[J]. Appl Catal A: Gen, 2004,268(1/2):121-125.  

    24. [24]

      LV Y Y, QIAN X F, TU B, ZHAO D. Generalized synthesis of core-shell structured nano-zeolite@ordered mesoporous silica composites[J]. Catal Today, 2013,204:2-7. doi: 10.1016/j.cattod.2012.09.031

    25. [25]

      ARMAROLI T, SIMON L J, DIGNE M, MANTANMIA T, BEVILACQUA M, VALTCHEV V, PATARIN J, BUSCA G. Effects of crystal size and Si/Al ratio on the surface properties of H-ZSM-5 zeolites[J]. Appl Catal A: Gen, 2006,306(1):78-84.  

    26. [26]

      HUANG Feng-lin, XIANG Xiao-feng. Simulation analysis of four-column process flow for methanol rectification[J]. Chem Eng Oil Gas, 2007,36(1):18-21.  

    27. [27]

      TRAN T M, GNEP S N, SZABO G, GUISNET M. Comparative study of the transformation of n-butane, n-hexane and n-heptane over H-MOR zeolites with various Si/Al ratios[J]. Appl Catal, 1998,170(1):49-58. doi: 10.1016/S0926-860X(98)00035-0

    28. [28]

      KONG De-jin, ZOU Wei, ZHENG Jun-lin, FANG Ding-ye. Crystallization kinetics and influencing factors in the syntheses of MFI/MFI core-shell zeolites[J]. Acta Phys Chim Sin, 2009,25(9):1921-1927.  

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    4. [4]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    7. [7]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    14. [14]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    15. [15]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    16. [16]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    19. [19]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(7)
  • Abstract views(1658)
  • HTML views(654)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return