Citation: YU Jie, WANG Jing-yun, WANG Zhen, ZHOU Ming-dong, WANG Hai-yan. Synthesis of composite zeolites and their performance in hydrolysis of cellulose[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(4): 419-426. shu

Synthesis of composite zeolites and their performance in hydrolysis of cellulose

  • Corresponding author: ZHOU Ming-dong, mingdong.zhou@lnpu.edu.cn WANG Hai-yan, haiyan.wang@lnpu.edu.cn
  • Received Date: 25 December 2017
    Revised Date: 26 February 2018

    Fund Project: Talent Scientific Research Fund of LSHU 2016XJJ-063Natural Science Foundation of Liaoning Province 2015020196the National Science Foundation of China 21101085Natural Science Foundation of Liaoning Province 20170540590The project was supported by the National Science Foundation of China (21101085), Natural Science Foundation of Liaoning Province (2015020196, 20170540590), the Fushun Science & Technology Program (FSKJHT 201423), the Liaoning Excellent Talents Program in University (LJQ2012031), Talent Scientific Research Fund of LSHU (2016XJJ-063)the Fushun Science & Technology Program FSKJHT 201423the Liaoning Excellent Talents Program in University LJQ2012031

Figures(7)

  • In this paper, core-shell composite zeolites (HUSY@MFI) were prepared by hydrothermal method. The composite zeolites were characterized by XRD, SEM, N2-adsorption, NH3-TPD and Py-FTIR. The results indicated that HUSY@MFI has both HUSY and MFI structure. Scanning Electron Microscope (SEM) reflects a core-shell morphology of HUSY@MFI. The particles displayed an elliptical sphere structure with scale-like surface. The growth of MFI shell results in a decrease of external acid density and the total acid sites. When the HUSY@MFI was used as catalyst instead of HUSY in hydrolysis of cellulose to glucose in 1-ethyl-3-methylimidazolium chloride ([Emim]Cl), the glucose yield could be significantly improved from 30.9% to 41.3%.
  • 加载中
    1. [1]

      PEREGO C, BOSETTI A B. Biomass to fuels:The role of zeolite and mesoporous materials[J]. Microporous Mesoporous Mater, 2011,144:28-39. doi: 10.1016/j.micromeso.2010.11.034

    2. [2]

      GOYAL H B, SEAL Diptendu, SAXENA R C. Bio-fuels from thermochemical conversion of renewable resources:A review[J]. Renewable Sustainable Energy Rev, 2008,12:504-517. doi: 10.1016/j.rser.2006.07.014

    3. [3]

      GUO H X, LIAN Y F, YAN L L, QI X H, SMITH R. Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system[J]. Green Chem, 2013,15:2167-2174. doi: 10.1039/c3gc40433a

    4. [4]

      CHUNDAWAT S P S, BECKHAM G T, HIMMEL M E, DALE B E. Deconstruction of lignocellulosic biomass to fuels and chemicals[J]. Annu Rev Chem Biomol Eng, 2011,2:121-145. doi: 10.1146/annurev-chembioeng-061010-114205

    5. [5]

      GEBOERS J, VYVER S V, OOMS R, BEECK B, JACOBS P, SELS B F. Chemocatalytic conversion of cellulose:Opportunities, advances and pitfalls[J]. Catal Sci Technol, 2011,1:1714-1726.  

    6. [6]

      CHANDRAKANT P, BISARIA V S. Simultaneous bioconversion of cellulose and hemicellulose to ethanol[J]. Crit Rev Biotechnol, 1998,18(4):295-331. doi: 10.1080/0738-859891224185

    7. [7]

      DENG W P, ZHANG Q H, WANG Y. Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural, levulinic acid, and lactic acid[J]. Sci China Chem, 2015,58(1):29-46. doi: 10.1007/s11426-014-5283-8

    8. [8]

      TAN M X, ZHAO L, ZHANG Y G. Production of 5-hydroxymethyl furfural from cellulose in CrCl2/Zeolite/BMIMCl system[J]. biomass and bioenergy, 2011,35:1367-1370. doi: 10.1016/j.biombioe.2010.12.006

    9. [9]

      RINALDI R, SCHÜTH F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes[J]. Chemsuschem, 2009,21:1096-1107.  

    10. [10]

      TORGET R W, KIM J, LEE Y Y. Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis[J]. Ind Eng Chem Res, 2000,39:2817-2825. doi: 10.1021/ie990915q

    11. [11]

      ZHAO Bo, HU Shang-lian, GONG Dao-yong, LI Hui-ping. New advances on hydrolysis of cellulose to glucose by solid acid[J]. Chem Ind Eng Prog, 2017,36(2):555-567.  

    12. [12]

      SHEN Shu-guang, LI Huan-mei, WANG Tao, CAI Bei, QIN Hai-feng, WANG Chun-yan. Effect of coal rank on structure of coal-based solid acids and their catalytic performance in cellulose hydrolysis[J]. J Fuel Chem Technol, 2013,41(12):1466-1472.  

    13. [13]

      CAI H L, LI C Z, WANG A Q, XU G L, ZHANG T. Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid[J]. Appl Catal B:Environ, 2012,123/124:333-338. doi: 10.1016/j.apcatb.2012.04.041

    14. [14]

      LAI D M, DENG L, GUO Q X, FU Y. Hydrolysis of biomass by magnetic solid acid[J]. Energy Environ Sci, 2011,4:3552-3557. doi: 10.1039/c1ee01526e

    15. [15]

      RINALDI R, PALKOVITS R, SCHUTH F. Depolymerization of cellulose using solid catalysts in ionic liquids[J]. Angew Chem Int Ed, 2008,47:8047-8050. doi: 10.1002/anie.v47:42

    16. [16]

      GUO H X, QI X H, LI L Y, SMITH R L. Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid[J]. Bioresour Technol, 2012,116:355-359. doi: 10.1016/j.biortech.2012.03.098

    17. [17]

      SATOSHI S, MASAAKI K, DAIZO Y, KIYOTAKA N, HIDEKI K, SHIGENOBU H, MICHIKAZU H. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups[J]. J Am Chem Soc, 2008,130(38):12787-12793. doi: 10.1021/ja803983h

    18. [18]

      ZHOU L P, LIU Z, SHI M T, DU S S, SUA Y L, YANG X M, XU J. Sulfonated hierarchical H-USY zeolite for efficient hydrolysis of hemicellulose/cellulose[J]. Carbohydrate Polymers, 2013,98:146-151. doi: 10.1016/j.carbpol.2013.05.074

    19. [19]

      ONDA A, OCHI T, YANAGISAWA K. Selective hydrolysis of cellulose into glucose over solid acid catalysts[J]. Green Chem, 2008,10(10):1033-1037. doi: 10.1039/b808471h

    20. [20]

      SWATLOSKI R P, SPEAR S K, HOLBREY J D, ROGERS R D. Dissolution of cellose with ionic liquids[J]. J Am Chem Soc, 2002,124(18):4974-4975. doi: 10.1021/ja025790m

    21. [21]

      LOPES A M D C, JOÃO K G, RUBIK D F, BOGE-ŁUKASIK E, DUARTE L, ANDREAUS J, BOGEL-ŁUKASIK R. Pre-treatment of lignocellulosic biomass using ionic liquids:Wheat straw fractionation[J]. Bioresour Technol, 2013,142:198-208. doi: 10.1016/j.biortech.2013.05.032

    22. [22]

      LOPES A M D C, BOGEL-ŁUKASIK R. Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts[J]. ChemSusChem, 2015,8:947-965. doi: 10.1002/cssc.v8.6

    23. [23]

      TAO F R, SONG H L, CHOU L J. Hydrolysis of cellulose in SO3H-functionalized ionic liquids[J]. Bioresour Technol, 2011,102:9000-9006. doi: 10.1016/j.biortech.2011.06.067

    24. [24]

      WANG J Y, ZHOU M D, YUAN Y G, ZHANG Q, FANG X C, ZANG S L. Hydrolysis of cellulose catalyzed by quaternary ammonium perrhenates in 1-allyl-3-methylimidazolium chloride[J]. Bioresour Technol, 2015,197:42-47. doi: 10.1016/j.biortech.2015.07.110

    25. [25]

      YUAN Y G, WANG J Y, FU N H, ZANG S L. Hydrolysis of cellulose in 1-allyl-3-methylimidazolium chloride catalyzed by methyltrioxorhenium[J]. Catal Commun, 2016,76:46-49. doi: 10.1016/j.catcom.2015.12.024

    26. [26]

      ABOU-YOUSEF H, HASSAN E B. A novel approach to enhance the activity of H-form zeolite catalyst for production of hydroxymethylfurfural from cellulose[J]. J Ind Eng Chem, 2014,20:1952-1957. doi: 10.1016/j.jiec.2013.09.016

    27. [27]

      ZHANG Z H, ZHAO Z B. Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid[J]. Carbohydrate Res, 2009,344:2069-2072. doi: 10.1016/j.carres.2009.07.011

    28. [28]

      ZHOU L P, LIU Z, BAI Y Q, LU T L, YANG X M, XU J. Hydrolysis of cellobiose catalyzed by zeolites-the role of acidity and micropore structure[J]. J Energy Chem, 2016,25:141-145. doi: 10.1016/j.jechem.2015.11.010

    29. [29]

      ZHENG J J, SUN X B. Structural features of core-shell zeolite-zeolite composite and its performance for methanol conversion into gasoline and diesel[J]. J Mater Res, 2016,31:2302-2316. doi: 10.1557/jmr.2016.208

    30. [30]

      MILLER G L. Use of dinitrosaiicyiic acid reagent for determination of reducing sugar[J]. Anal Chem, 1959,31:426-428. doi: 10.1021/ac60147a030

    31. [31]

      MAO R, RAMSARAN A, XIAO S Y, YAO J H, SEMMER V. PH of the sodium carbonate solution used for the desilication of zeolite materials[J]. J Materials Chem, 1995,5(3):533-535. doi: 10.1039/jm9950500533

    32. [32]

      GROEN J C, MOULIJN J A, PÉREZ-RAMÍREZ J. Desilication:On the controlled generation of mesoporosity in MFI zeolites[J]. J Mater Chem, 2006,16(22):2121-2131. doi: 10.1039/B517510K

    33. [33]

      GUO Da-lei, ZHENG Jia-jun, YI Yu-ming, ZHANG Qiu, PAN Meng, LI Rui-feng. Synthesis and characterization of FMZ bi-phases composite zeolites[J]. Acta Pet Sin(Pet Process Sect), 2013,29(4):591-596.  

    34. [34]

      QI X H, WATANABE M, AIDA T M, SMITH R L. Catalytic conversion of cellulose into 5-hydroxymethylfurfural in high yields via a two-step process[J]. Cellulose, 2011,18:1327-1333. doi: 10.1007/s10570-011-9568-1

  • 加载中
    1. [1]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    4. [4]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    5. [5]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    6. [6]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    10. [10]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    11. [11]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    12. [12]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    13. [13]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    14. [14]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    19. [19]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    20. [20]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

Metrics
  • PDF Downloads(7)
  • Abstract views(1077)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return