Citation: DU Jun-tao, ZHANG Da-kui, ZHANG Min-xin, JIA Hui-na, NIE Yi, SUN Yi-kai, DENG Wen-an, LI Chuan. Structure characteristics and association behavior of coal and petroleum C7-asphaltenes[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 674-682. shu

Structure characteristics and association behavior of coal and petroleum C7-asphaltenes

  • Corresponding author: NIE Yi, ynie@ipe.ac.cn
  • Received Date: 1 June 2020
    Revised Date: 5 June 2020

    Fund Project: the National Natural Science Foundation of China 21908206The project was supported the National Natural Science Foundation of China (21908206)

Figures(5)

  • The structural characteristics and differences of coal tar and petroleum C7-asphaltenes were studied, such as chemical composition, functional groups and molecular structure, using nuclear magnetic resonance (NMR), small angle X-ray scattering (SAXS), X-ray photoelectron spectroscopy (XPS), improved B-L method and other methods. Furthermore, the association behavior and aggregation size of two different types of asphaltenes as well as the hydrogen bonds and acidic-basic interaction were analyzed by asphaltenes solubility parameters in polar solvents. The experiment results showed that the coal tar asphaltenes (CT-asp) was mainly composed of less aromatic rings with more short alkyl branched chains and possessed a high aromaticity degree. The higher content oxygen heteroatoms of CT-asp were mostly presented as aromatic ether bonds and phenolic hydroxyl groups. The aromatic nucleus size and the average relative molecular weight of petroleum asphaltenes (M-asp) were larger than that of CT-asp. The M-asp consisted primarily of more aromatic rings with more long alkyl branched chains and possessed a low aromaticity degree. The association and aggregation degree between CT-asp and M-asp was associated with the amount of substance ratio (nCT-asp/nM-asp) and their molecular structure characteristics. The association force of two types mainly was the hydrogen bonds and the acidic-basic interaction from heteroatomic functional groups.
  • 加载中
    1. [1]

      KAN T, SUN X, WANG H, LI C, MUHAMMAD U. Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds[J]. Energy Fuels, 2012,26(6):3604-3611. doi: 10.1021/ef3004398

    2. [2]

      ZHANG Qian-yu, XU Zhi-ming, ZHAO Suo-qi. Separation and characterization of C5-asphaltene from low temperature coal tar[J]. J Fuel Chem Technol, 2016,44(11):1318-1325. doi: 10.3969/j.issn.0253-2409.2016.11.006 

    3. [3]

      ANGELES M J, LEYVA C, ANCHEYTA J, RAMÍREZ S. A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst[J]. Catal Today, 2014:220-294.  

    4. [4]

      LI C, DU J, YANG T, DENG W. Exploratory investigation on the slurry-phase hydrocracking reaction behavior of coal tar and petroleum-based heavy oil mixed raw material[J]. Energy Fuels, 2019,33(9):8471-8482. doi: 10.1021/acs.energyfuels.9b02031

    5. [5]

      SHENG Qiang, WANG Gang, JIN Nan, ZHANG Qi-yuan, GAO Cheng-di, GAO Jin-sen. Petroleum asphaltene micro-structure analysis and lightening[J]. Chem Ind Eng Prog, 2019,38(3):1147-1159.  

    6. [6]

      ZHANG Wen, LONG Jun, REN Qiang, CAI Xin-heng. Research progress on aggregation behavior of asphaltene[J]. Chem Ind Eng Prog, 2019,38(5):2158-2163.  

    7. [7]

      LONG Jian, SHEN Ben-xian, ZHAO Ji-gang, LING Hao, LU Jun-cai. Mechanism of improving atmospheric solvent deasphalting process by vacuum residue blending with coal tar[J]. Acta Pet Sin(Pet Process Sect), 2012,28(1):69-75. doi: 10.3969/j.issn.1001-8719.2012.01.013

    8. [8]

      MENG Zhao-hui, YANG Sheng-bin, YANG Tao, GUO Rong. Study on stability of vacuum residue blending coal tar and hydrocracking of mixture[J]. Chin Pet Process Petrochem Technol, 2014,45(5):25-28. doi: 10.3969/j.issn.1005-2399.2014.05.005

    9. [9]

      HU Jian-hong, CHENG Xiang-lin, LI Guo-ning, WU Jian-jun, JI Wei, WANG Yong-gang, WANG Bai-chuan. Association behavior of coal tar pitch soluble components in toluene[J]. J Fuel Chem Technol, 2014,42(7):774-778.  

    10. [10]

      YUDIN I K, NIKOLAENKO G L, GORODETSKII E E, KOSOV V I, MELIKYAN V R, MARKHASHOV E L, FROT D, BRIOLANT Y. Mechanisms of asphaltene aggregation in toluene-heptane mixtures[J]. J Pet Sci Eng, 1998,20(3/4):297-301.  

    11. [11]

      HAJI-AKBARI N, TEERAPHAPKUL P, FOGLER H S. Effect of asphaltene concentration on the aggregation and precipitation tendency of asphaltenes[J]. Energy Fuels, 2014,28(2):909-919. doi: 10.1021/ef4021125

    12. [12]

      ANISIMOV M A, GANEEVA Y M, GORODETSKII E E, DESHABO V A, KOSOV V I, KURYAKOV V N, YUDIN D I, YUDIN I K. Effects of resins on aggregation and stability of asphaltenes[J]. Energy Fuels, 2014,28(10):6200-6209. doi: 10.1021/ef501145a

    13. [13]

      KRAIWATTANAWONG K, FOGLER H S, GHARFEH S G, SINGH P, THOMASON W H, CHAVADEJ S. Effect of asphaltene dispersants on aggregate size distribution and growth[J]. Energy Fuels, 2009,23(3):1575-1582. doi: 10.1021/ef800706c

    14. [14]

      GRAY M R, TYKWINSKI R R, STRYKER J M, TAN X. Supramolecular assembly model for aggregation of petroleum asphaltenes[J]. Energy Fuels, 2011,25(7):3125-3134. doi: 10.1021/ef200654p

    15. [15]

      GABRIENKO A A, MARTYANOV O N, KAZARIAN S G. Effect of temperature and composition on the stability of crude oil blends studied with chemical imaging[J]. Energy Fuels, 2015,29(11):7114-7123. doi: 10.1021/acs.energyfuels.5b01880

    16. [16]

      AGRAWALA M, YARRANTON H W. An asphaltene association model analogous to linear polymerization[J]. Ind Eng Chem Res, 2001,40(21):4664-4672. doi: 10.1021/ie0103963

    17. [17]

      RAKOTONDRADANY F, FENNIRI H, RAHIMI P, GAWRYS K L, KILPATRICK P K, GRAY M R. Hexabenzocoronene model compounds for asphaltene fractions:Synthesis & characterization[J]. Energy Fuels, 2006,20(6):2439-2447. doi: 10.1021/ef060130e

    18. [18]

      LI P, ZONG Z, LI Z, WANG Y, LIU F, WEI X. Characterization of basic heteroatom-containing organic compounds in liquefaction residue from Shenmu-Fugu subbituminous coal by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Fuel Process Technol, 2015,132:91-98. doi: 10.1016/j.fuproc.2014.12.026

    19. [19]

      DU J, DENG W, LI C, ZHANG Z, YANG T, GUO R. Reactivity and structure changes of coal tar asphaltene during slurry-phase hydrocracking[J]. Energy Fuels, 2017,31(2):1858-1865. doi: 10.1021/acs.energyfuels.6b02992

    20. [20]

      XIONG G, LI Y, JIN L, HU H. In situ FT-IR spectroscopic studies on thermal decomposition of the weak covalent bonds of brown coal[J]. J Anal Appl Pyroysisl, 2015,115:262-267. doi: 10.1016/j.jaap.2015.08.002

    21. [21]

      FERGOUG T, BOUHADDA Y. Determination of Hassi Messaoud asphaltene aromatic structure from 1H & 13C NMR analysis[J]. Fuel, 2014,115:521-526. doi: 10.1016/j.fuel.2013.07.055

    22. [22]

      DUTTA MAJUMDAR R, BAKE K D, RATNA Y, POMERANTZ A E, MULLINS O C, GERKEN M, HAZENDONK P. Single-core PAHs in petroleum-and coal-derived asphaltenes:Size and distribution from solid-state NMR spectroscopy and optical absorption measurements[J]. Energy Fuels, 2016,30(9):6892-6906. doi: 10.1021/acs.energyfuels.5b02815

    23. [23]

      ALHUMAIDAN F S, HAUSER A, RANA M S, LABABIDI H M S, BEHBEHANI M. Changes in asphaltene structure during thermal cracking of residual oils:XRD study[J]. Fuel, 2015,150:558-564. doi: 10.1016/j.fuel.2015.02.076

    24. [24]

      SCHNEIDER M H, ANDREWS A B, MITRA-KIRTLEY S, MULLINS O C. Asphaltene molecular size by fluorescence correlation spectroscopy[J]. Energy Fuels, 2007,21(5):2875-2882. doi: 10.1021/ef700216r

    25. [25]

      JIN N, WANG G, HAN S, MENG Y, XU C, GAO J. Hydroconversion behavior of asphaltenes under liquid-phase hydrogenation conditions[J]. Energy Fuels, 2016,30(4):2594-2603. doi: 10.1021/acs.energyfuels.5b02765

    26. [26]

      SUN Z, LI D, MA H, TIAN P, LI X, LI W, ZHU Y. Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Process Technol, 2015,138:413-418. doi: 10.1016/j.fuproc.2015.05.008

    27. [27]

      XIA W, YANG J. Reverse flotation of Taixi oxidized coal[J]. Energy Fuels, 2013,27(12):7324-7329. doi: 10.1021/ef4017224

    28. [28]

      EYSSAUTIER J, LEVITZ P, ESPINAT D, JESTIN J, GUMMEL J, GRILLO I, BARRE L. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering[J]. J Phys Chem B, 2011,115(21):6827-6837. doi: 10.1021/jp111468d

    29. [29]

      ZHANG Qing, DENG WEN-an, LI Chuan, WU Le-le. Study on basic chemical structure and association of asphaltene in heavy oil[J]. Chin Pet Process Petrochem Technol, 2014,45(6):20-25. doi: 10.3969/j.issn.1005-2399.2014.06.007

    30. [30]

      JUYAL P, MERINO-GARCIA D, ANDERSEN S I. Effect on molecular interactions of chemical alteration of petroleum asphaltenes[J]. Energy Fuels, 2005,19(4):1272-1281. doi: 10.1021/ef050012b

    31. [31]

      LIU X, HIRAJIMA T, NONAKA M, SASAKI K. Investigation of the changes in hydrogen bonds during low-temperature pyrolysis of lignite by diffuse reflectance FT-IR combined with forms of water[J]. Ind Eng Chem Res, 2015,54(36):8971-8978. doi: 10.1021/acs.iecr.5b02474

    32. [32]

      ZHANG Long-li, WANG Chun-lan, ZHAO Yuan-sheng, YANG Guo-hua, YANG Chao-he. Study on the relationship between sulfur functionalities and the characteristics of THAR asphaltene[J]. J Fuel Chem Technol, 2012,40(9):1081-1085. doi: 10.3969/j.issn.0253-2409.2012.09.009 

  • 加载中
    1. [1]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    2. [2]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    3. [3]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    4. [4]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    5. [5]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    10. [10]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    11. [11]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    12. [12]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    13. [13]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    14. [14]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    15. [15]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    19. [19]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    20. [20]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

Metrics
  • PDF Downloads(2)
  • Abstract views(245)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return