Citation: SHEN Guo-dong, WANG Zhi-qi, WU Jing-li, HE Tao, LI Jian-qing, YANG Jing, WU Jin-hu. Combustion characteristics of low-rank coal chars in O2/CO2, O2/N2 and O2/Ar by TGA[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1066-1073. shu

Combustion characteristics of low-rank coal chars in O2/CO2, O2/N2 and O2/Ar by TGA

  • Corresponding author: WANG Zhi-qi, wangzq@qibebt.ac.cn
  • Received Date: 7 April 2016
    Revised Date: 24 June 2016

    Fund Project: Strategic Pilot Scientific & Technological Project of Chinese Academy of Sciences XDA0705100

Figures(6)

  • The combustion reactivity of two chars prepared from two low-rank coals in Northwest China were studied using a thermogravimetric analyzer (TGA). The effects of different atmospheres (O2/CO2, O2/N2 and O2/Ar) and different oxygen concentrations on the combustion characteristics were investigated. The results indicate that both atmosphere and oxygen concentration show effectiveness on combustion of char. Compared with N2 and Ar, CO2 could significantly promote the reaction. When combustion atmosphere changes from O2/CO2 to O2/Ar, the burnout temperature increases by 63.7 and 68.8℃ for the two chars respectively. Meanwhile, when the combustion atmosphere changes from O2/CO2 to O2/N2, that is 135.9 and 129.6℃, respectively. An increase in concentration of oxygen can also improve the combustion performance of chars in the test. At the same time, kinetic analysis of the combustion profiles of the chars reveals that both the apparent activation energy E and the pre-exponential factor A increased with increasing oxygen concentration and the compensation effect exists between activation energy E and pre-exponential factor A of chars' combustion.
  • 加载中
    1. [1]

      XIE K, LI W, ZHAO W. Coal chemical industry and its sustainable development in China[J]. Energy, 2010,35(11):4349-4355. doi: 10.1016/j.energy.2009.05.029

    2. [2]

      BP Statistical Review of World Energy 2015[Z]. London: British Petroleum, 2015.

    3. [3]

      SHEALY M, DORIAN J P. Growing Chinese coal use: Dramatic resource and environmental implications[J]. Energy Policy, 2010,38(5):2116-2122. doi: 10.1016/j.enpol.2009.06.051

    4. [4]

      GE L, ZHANG Y, WANG Z, ZHOU J, CEN K. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals[J]. Energy Conv Manag, 2013,71(71):84-91.

    5. [5]

      YU J, TAHMASEBI A, HAN Y, YIN F, LI X. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization[J]. Fuel Process Technol, 2013,106(2):9-20.  

    6. [6]

      HOU H H, SHAO L Y, TANG Y, WANG S, WANG X T, LIU S. Study on coal bed methane genetic types and formation models of low rank coal in China[J]. China Min Mag, 2014,23:66-69.

    7. [7]

      KHAN M Z, CHUN D H, YOO J, KIM S D, RHIM Y J, CHOI H K, LIM J, LEE S, RIFELLA A. Evaluation of the effect of a palm acid oil coating on upgrading low rank coal[J]. RSC Adv, 2015,5(78):63955-63963. doi: 10.1039/C5RA08994H

    8. [8]

      AZIZ M, KANSHA Y, KISHIMOTO A, KOTANI Y, LIU Y, TSUTSUMI A. Advanced energy saving in low rank coal drying based on self-heat recuperation technology[J]. Fuel Process Technol, 2012,104(12):16-22.  

    9. [9]

      BHOI S, BANERJEE T, MOHANTY K. Insights on the combustion and pyrolysis behavior of three different ranks of coals using reactive molecular dynamics simulation[J]. RSC Adv, 2016,6(4):2559-2570. doi: 10.1039/C5RA23181G

    10. [10]

      ZHANG L, LI T, QUYN D, DONG L, QIU P, LI C. Formation of nascent char structure during the fast pyrolysis of mallee wood and low-rank coals[J]. Fuel, 2015,150:486-492. doi: 10.1016/j.fuel.2015.02.066

    11. [11]

      ZHOU Jian-lin, WANG Yong-gang, HUANG Xin, ZHANG Shu, LIN Xiong-chao. Determination of O-containing functional groups distribution in low-rank coals by chemical titration[J]. J Fuel Chem Technol, 2013,41(2):134-138.  

    12. [12]

      WANG J G, ZHAO X H. Demonstration of key technologies for clean and efficient utilization of low-rank coal[J]. Bull Chin Acad Geol Sci, 2012,27(3):382-388.

    13. [13]

      XU Xiu-qiang, WANG Yong-gang, CHEN Guo-peng, CHEN Zong-ding, QIN Zhong-yu, DAI Jin-ze, ZHANG Shu, XU De-ping. Effects of steam on the reactivity and microstructure of char from in-situ gasification of brown coal[J]. J Fuel Chem Technol, 2015,43(5):546-553.  

    14. [14]

      ZHOU Z, HU X, YOU Z, WANG Z, ZHOU J, CEN K. Oxy-fuel combustion characteristics and kinetic parameters of lignite coal from thermo-gravimetric data[J]. Thermochim Acta, 2013,553(553):54-59.  

    15. [15]

      YUZBASI N S, SEL UK N. Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR[J]. Fuel Process Technol, 2011,92(5):1101-1108. doi: 10.1016/j.fuproc.2011.01.005

    16. [16]

      SENNECA O, CORTESE L. Kinetics of coal oxy-combustion by means of different experimental techniques[J]. Fuel, 2012,102(6):751-759.  

    17. [17]

      GIL M V, RIAZA J, ÁLVAREZ L, PEVIDA C, PIS J J, RUBIERA F. Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor[J]. Appl Energy, 2012,91(1):67-74. doi: 10.1016/j.apenergy.2011.09.017

    18. [18]

      LIU X, CHEN M, YU D. Oxygen enriched co-combustion characteristics of herbaceous biomass and bituminous coal[J]. Thermochim. Acta, 2013,569(18):17-24.  

    19. [19]

      DAOOD S, NIMMO W, EDGE P, GIBBS B. Deep-staged, oxygen enriched combustion of coal[J]. Fuel, 2012,101:187-196. doi: 10.1016/j.fuel.2011.02.007

    20. [20]

      FU Z, ZHANG S, LI X, SHAO J, WANG K, CHEN H. MSW oxy-enriched incineration technology applied in China: Combustion temperature, flue gas loss and economic considerations[J]. Waste Manage, 2015,38(12):149-156.  

    21. [21]

      PICKARD S, DAOOD S, NIMMO W, LORD R, POURKASHANIAN M. Bio-CCS: Co-firing of established greenfield and novel, brownfield biomass resources under air, oxygen-enriched air and oxy-fuel conditions[J]. Energy Procedia, 2013,37:6062-6069. doi: 10.1016/j.egypro.2013.06.535

    22. [22]

      DING N, ZHANG C W, LUO C, ZHENG Y, LIU Z G. Effect of hematite addition to CaSO4 oxygen carrier in chemical looping combustion of coal char[J]. RSC Adv, 2015,5(69):56362-56376. doi: 10.1039/C5RA06887H

    23. [23]

      LIU H. Combustion of coal chars in O2/CO2 and O2/N2 mixtures: A comparative study with non-isothermal thermogravimetric analyzer (TGA) tests[J]. Energy Fuels, 2009,23(9):4278-4285. doi: 10.1021/ef9002928

    24. [24]

      RATHNAM R K, ELLIOTT L K, WALL T F, LIU Y, MOGHTADERI B. Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions[J]. Fuel Process Technol, 2009,90(6):797-802. doi: 10.1016/j.fuproc.2009.02.009

    25. [25]

      FAN Y S, ZOU Z, CAO Z, XU Y, JIANG X. Ignition characteristics of pulverized coal under high oxygen concentrations[J]. Energy Fuels, 2008,22(2):892-897. doi: 10.1021/ef7006497

    26. [26]

      OTERO M, GOMEZ X, GARCIA A I, MORÁN A. Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceous materials[J]. J Therm Anal Calorim, 2008,93(2):619-626. doi: 10.1007/s10973-007-8415-y

    27. [27]

      EBRAHIMI-KAHRIZSANGI R, ABBASI M H. Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA[J]. Trans Nonferrous Met Soc China, 2008,18(1):217-221. doi: 10.1016/S1003-6326(08)60039-4

    28. [28]

      VÁRHEGYI G, SZABÓ P, JAKAB E, TILL F, RICHARD J R. Mathematical modeling of char reactivity in Ar-O2 and CO2-O2 mixtures[J]. Energy Fuels, 1996,10(6):1208-1214. doi: 10.1021/ef950252z

    29. [29]

      GUPTA R P, GURURAJAN V S, LUCAS J A, WALL T F. Ignition temperature of pulverized coal particles: Experimental techniques and coal-related influences[J]. Combust Flame, 1990,79(3/4):333-339.  

    30. [30]

      RIAZA J, ÁLVAREZ L, GIL M V, PEVIDA C, PIS J J, RUBIERA F. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor[J]. Energy, 2011,36(8):5314-5319. doi: 10.1016/j.energy.2011.06.039

    31. [31]

      LI Q, ZHAO C, CHEN X, WU W, LI Y. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis[J]. J Anal Appl Pyrolysis, 2009,85(1/2):521-528.

    32. [32]

      MASEL R I. Chemical Kinetics and Catalysis[M]. New York: Wiley-Interscience, 2001.

    33. [33]

      BROWN M E, GALWEY A K. The significance of "compensation effects" appearing in data published in "computational aspects of kinetic analysis": ICTAC project, 2000[J]. Thermochim Acta, 2002,387(2):173-183. doi: 10.1016/S0040-6031(01)00841-3

    34. [34]

      ZSAKO J. Compensation effect in heterogeneous non-isothermal kinetics[J]. J Therm Anal, 1996,47(6):1679-1690. doi: 10.1007/BF01980913

  • 加载中
    1. [1]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    2. [2]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    3. [3]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    4. [4]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    5. [5]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    6. [6]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Zeyin ChenJiaju ShiYusheng ZhouPeng ZhangGuodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    10. [10]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    11. [11]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    14. [14]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    15. [15]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    16. [16]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    17. [17]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    20. [20]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

Metrics
  • PDF Downloads(0)
  • Abstract views(885)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return