Citation: GUO Hui-qing, FU Qi, WANG Xin-long, LIU Fen-rong, HU Rui-sheng, ZHANG Hao. Effect of CO2 atmosphere on sulfur release during coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(5): 523-528. shu

Effect of CO2 atmosphere on sulfur release during coal pyrolysis

  • Corresponding author: LIU Fen-rong, fenrongl@163.com
  • Received Date: 11 November 2016
    Revised Date: 22 March 2017

    Fund Project: the National Natural Science Foundation of China 21466025

Figures(5)

  • Yima (YM) coal and Pingshuo (PS) coal as well as their deashed coals and depyrited coals were used to investigate the effects of CO2 and Ar on the sulfur release behavior during coal pyrolysis by pyrolysis connected with mass spectrometer (Py-MS) and pyrolysis connected with gas chromatogram (Py-GC). It is found that CO2 atmosphere can promote the release of H2S, COS and SO2, especially the remarkable releasing of COS. In addition, CO2 atmosphere can decrease the maximum release peak temperature of H2S, COS and SO2 for raw coals, while there is no obvious effect for their deashed coals. At the same time, CO2 is beneficial to the decomposition of organic sulfur at higher temperature. That the COS formation is related to CO at higher temperatures and has nothing to do with CO at lower temperatures is validated.
  • 加载中
    1. [1]

      KAN H, WONG C M, VICHIT-VADAKAN N, QIAN Z. Short-term association between sulfur dioxide and daily mortality: The public health and air pollution in asia (PAPA) study[J]. Environ Res, 2010,110(3):258-264. doi: 10.1016/j.envres.2010.01.006

    2. [2]

      LIAO H, LI B, ZHANG B. Pyrolysis of coal with hydrogen-rich gases. 2. Desulfurization and denitrogenation in coal pyrolysis under coke-oven gas and synthesis gas[J]. Fuel, 1998,77(14):1643-1646. doi: 10.1016/S0016-2361(98)00076-3

    3. [3]

      ZHANG L, SATO A, NINOMIYA Y, SASAOKA E. Partitioning of sulfur and calcium during pyrolysis and combustion of high sulfur coals impregnated with calcium acetate as the desulfurization sorbent[J]. Fuel, 2004,83(7/8):1039-1053.  

    4. [4]

      DURAN J, MAHASAY S, STOCK L. The occurrence of elemental sulphur in coals[J]. Fuel, 1986,65(8):1167-1168. doi: 10.1016/0016-2361(86)90187-0

    5. [5]

      ZHU Gen-quan, XIA Dao-hong, QUE Guo-he. Study on pyrolytic mechanism of sulfur-containing compounds[J]. J Fuel Chem Technol, 2000,28(6):518-521.  

    6. [6]

      MENG Li-li, FU Chun-hui, WANG Mei-jun, CHANG Li-ping. Effect of alkali carbonates on the formation of H2S and NH3 during temperature programmed pyrolysis of brown coal[J]. J Fuel Chem Technol, 2012,40(2):138-142.  

    7. [7]

      TSUBOUCHI N, XU C, OHTSUKA Y. Effect of alkaline earth metals on N2 formation during fixed bed pyrolysis of a low rank coal[J]. Fuel Process Technol, 2004,85(8/10):1039-1052.  

    8. [8]

      PANG Ke-liang, XIANG Wen-guo, ZHAO Chang-sui, ZHAO Xi-bai. Gasification of coal CO2 in the presence of potash[J]. J Comb Sci Technol, 2007,13(1):63-66.  

    9. [9]

      LIU Fen-rong, LI Wen, LI Bao-qing, CHEN Hao-kan. Sulfur removal and its distribution during coal pyrolysis in fluidized bed reactor under oxidative atmospheres[J]. J Fuel Chem Technol, 2006,34(4):404-407.  

    10. [10]

      GRYGLEWIEZ G, JASIENKO S. Sulfur groups in the cokes obtained from coals of different ranks[J]. Fuel Process Technol, 1988,19(1):51-59. doi: 10.1016/0378-3820(88)90085-9

    11. [11]

      GIVEN P H, JONES J R. Experiment on the removal of sulfur from coal and coke[J]. Fuel, 1996,45(2):151-158.

    12. [12]

      WANG Li-hua, WANG Su-zhen, ZHAO Wei. migration of sulfur in coal under the reductlve pyrolysis part (Ⅰ) comparison of experimental resultsunder H2 and N2 atmosphere[J]. Coal Convers, 2009,32(1):10-13.

    13. [13]

      KARACA S. Desulfurization of a turkish lignite at various gas atmospheres by pyrolysis. Effect of mineral matte[J]. Fuel, 2003,82(12):1509-1516. doi: 10.1016/S0016-2361(03)00068-1

    14. [14]

      HUANG Ying-hua, WANG Zheng-hui, HANG Yue-zheng. Coal Chemistry and Technology Experiments[M]. Shanghai: East China Institute of Chemical Technology Press, 1988, 78. 

    15. [15]

      ACCOLLA F V, ORR W L. Pyrite removal from Kerogen without altering organic matter: The chromous chloride method[J]. Energy Fuels, 1993,7(3):406-410. doi: 10.1021/ef00039a012

    16. [16]

      WANG X, GUO H, LIU F, HU R, WANG M. Effects of CO2 on sulfur removal and its release behavior during coal pyrolysis[J]. Fuel, 2016,165:484-489. doi: 10.1016/j.fuel.2015.10.047

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    7. [7]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    10. [10]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    11. [11]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    12. [12]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    16. [16]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    17. [17]

      Hui BianXinyi YuanNan ZhangZhuo XuJuhong LianRuibin JiangJunqing YanDeng LiShengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034

    18. [18]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(2)
  • Abstract views(748)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return