Citation:
Zhang Huaiyuan, Tang Rongping, Wu Jiawei, Hu Yulai. Progress in the Oxidation Reactions Promoted by Trivalent Iodine Reagents[J]. Chemistry,
;2018, 81(8): 681-691.
-
Trivalent iodine reagents have similar reaction properties to transition metals such as mercury, titanium, and lead, and have the advantage of environment-friendly, low cost, mild reaction conditions, easy handling and commericial availaiblity. These compounds are widely used in organic synthesis, especially, as efficient selective oxidants that have attracted the attention of a large number of organic chemists. In this review, 14 kinds of oxidation reactions mediated by trivalent iodine reagents, including alcohol oxidation, oxidative functionalization of carbonyl compounds, to selenylation reactions and bismuthlation reactions etc., are briefly summarized.
-
-
-
[1]
T Wirth. Hypervalent Iodine Chemistry:Modern Developments in Organic Synthesis, Topics in Current Chemistry, 2003, vol. 224, Springer, Berlin.
-
[2]
J Eljo, M S Carle, G K Murphy. Synlett, 2017, 28(20):2871~2875.
-
[3]
N N Karade, V H Budhewar, A N Katkar et al. Arkivoc, 2006, (11):162~167.
-
[4]
M Kida, T Sueda, S Goto et al. Chem. Commun., 1996, 16:1933~1934.
-
[5]
A De Mico, R Margarita, L Parlanti et al. J. Org. Chem., 1997, 62(20):6974~6977.
-
[6]
G Piancatelli, F Leonelli, N Do et al. Org. Synth., 2006, 83:18~23.
-
[7]
X Q Li, W K Wang, C Zhang. Adv. Synth. Catal., 2009, 351(14-15):2342~2350.
- [8]
-
[9]
H Tohma, S Takizawa, T Maegawa et al. Angew. Chem., 2000, 112(7):1362~1364.
-
[10]
-
[11]
S Hara, T Hatakeyama, S Q Chen et al. J. Fluorine Chem., 1998, 87(2):189~192.
-
[12]
M Yoshida, K Fujikawa, S Sato et al. Arkivoc, 2003, vi:36~42.
-
[13]
-
[14]
J Tao, R Tran, G K Murphy. J. Am. Chem. Soc., 2013, 135(44):16312~16315.
-
[15]
T V Moskovkina, V I Vysotskii. Org. Khim., 1991, 27(4):833~836.
-
[16]
H Ibrahim, F Kleinbeck, A Togni. Helv. Chim. Acta, 2004, 87(3):605~610.
-
[17]
N A Magnus, L Ducry, V Rolland et al. J. Chem. Soc. Perkin Transac., 1997, 16:2313~2318.
-
[18]
-
[19]
I Tellitu, E Dominguez. Tetrahedron, 2008, 64(10):2465~2470.
-
[20]
M Celik, C Alp, B Coskun et al. Tetrahed. Lett., 2006, 47(22):3659~3663.
-
[21]
W Zhong, J Yang, X Meng et al. J. Org. Chem., 2011, 76(24):9997~10004.
-
[22]
M Fujita, Y Ookubo, T Sugimura. Tetrahed. Lett., 2009, 50(12):1298~1300.
- [23]
-
[24]
A Kirschning, E Kunst, M Ries et al. Arkivoc, 2003, (6):145~163.
-
[25]
A Y Koposov, V V Boyarskikh, V V Zhdankin. Org. Lett., 2004, 6(20):3613~3615.
-
[26]
K C Nicolaou, N L Simmons, Y Ying et al. J. Am. Chem. Soc., 2011, 133(21):8134~8137.
-
[27]
L Liu, D Zhang-Negrerie, Y Du et al. Org. Lett., 2014, 16(2):436~439.
-
[28]
L Rebrovic, G F Koser. J. Org. Chem., 1984, 49(24):4700~4702.
-
[29]
M Hachiya, M Ito, T Matsuo et al. Org. Lett., 2011, 13(10):2666~2669.
-
[30]
M A Ciufolini, N A Broun, S Canesi. Synthesis, 2007, 24:3759~3772.
-
[31]
C Sabot, B Commare, M A Duceppe et al. Synlett, 2008, 20:3226~3230.
-
[32]
-
[33]
M Kirihara, S Yokoyama, H Kakuda et al. Tetrahedron, 1998, 54(46):13943~13954.
-
[34]
-
[35]
G W Gribble. Hofmann rearrangement. Name Reactions for Homologations-Part Ⅱ, Wiley:Hoboken, NJ2009:164~199.
-
[36]
M Kalesse, D Landsberg. Synlett, 2010, 7:1104~1106.
-
[37]
M W Justik, G F Koser. Tetrahed. Lett., 2004, 45(32):6159~6163.
- [38]
-
[39]
T Abo, M Sawaguchi, H Senboku et al. Molecules, 2005, 10(1):183~189.
-
[40]
Y Sun, X Huang, X Li et al. Adv. Synth. Catal., 2018, 360(6):1082~1087.
-
[41]
L F Silva, Jr., R S Vasconcelos, M A Nogueira. Org. Lett., 2008, 10(5):1017~1020.
-
[42]
L Kurti, P Herczegh, J Visy et al. J. Chem. Soc. Perkin Transac, 1999, 4:379~380.
-
[43]
K C Guerard, C Chapelle, M A Giroux et al. Org. Lett., 2009, 11(20):4756~4759.
-
[44]
G Jacquemot, S Canesi. J. Org. Chem., 2012, 77(17):7588~7594.
-
[45]
H Fujioka, H Komatsu, T Nakamura et al. Chem. Commun., 2010, 46(23):4133~4135.
-
[46]
K Hata, H Hamamoto, Y Shiozaki et al. Tetrahedron, 2007, 63(19):4052~4060.
-
[47]
T Dohi, M Ito, I Itani et al. Org. Lett., 2011, 13(23):6208~6211.
-
[48]
H Tohma, M Iwata, T Maegawa et al. Tetrahed. Lett., 2002, 43(50):9241~9244.
-
[49]
S R Taylor, A T Ung, S G Pyne et al. Tetrahedron, 2007, 63(46):11377~11385.
-
[50]
Y Kita, H Watanabe, M Egi et al. J. Chem. Soc. Perkin Transac., 1998, 4:635~636.
-
[51]
Y Kita, M Egi, M Ohtsubo et al. Chem. Commun., 1996, 19:2225~2226.
-
[52]
-
[53]
T Dohi, K Morimoto, Y Kiyono et al. Chem. Commun., 2005, (23):2930~2932.
-
[54]
-
[55]
Y Kita, K Morimoto, M Ito et al. J. Am. Chem. Soc., 2009, 131(5):1668~1669.
-
[56]
S Rihn, M Erdem, A De Nicola et al. Org. Lett., 2011, 13(8):1916~1919.
-
[57]
-
[58]
J A Souto, Y Gonzalez, A Iglesias et al. Chem. Asian J., 2012, 7(5):1103~1111.
-
[59]
D J Chen, Z C Chen. Tetrahed. Lett., 2000, 41(38):7361~7363.
-
[60]
A De Mico, R Margarita, A Mariani et al. Chem. Commun., 1997, 13:1237~1238.
-
[61]
M Bruno, R Margarita, L Parlanti et al. Tetrahed. Lett., 1998, 39(22):3847~3848.
-
[62]
M Tingoli, M Tiecco, L Testaferri et al. Synth. Commun., 1998, 28(10):1769~1778.
- [63]
- [64]
- [65]
-
[1]
-
-
-
[1]
Zhenxing Liu , Jiaen Hu , Zishi Cheng , Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107
-
[2]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[3]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[6]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[7]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[8]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[9]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[10]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
-
[11]
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
-
[12]
Wen Jiang , Jieli Lin , Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144
-
[13]
Tao Wen , Tao Zhang , Changguo Sun , Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055
-
[14]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[15]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[16]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[17]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[18]
Lili Jiang , Shaoyu Zheng , Xuejiao Liu , Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004
-
[19]
Wenjuan Tan , Yong Ye , Xiujuan Sun , Bei Liu , Jiajia Zhou , Hailong Liao , Xiulin Wu , Rui Ding , Enhui Liu , Ping Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054
-
[20]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[1]
Metrics
- PDF Downloads(248)
- Abstract views(8342)
- HTML views(2951)