Citation: Zhang Huaiyuan, Tang Rongping, Wu Jiawei, Hu Yulai. Progress in the Oxidation Reactions Promoted by Trivalent Iodine Reagents[J]. Chemistry, ;2018, 81(8): 681-691. shu

Progress in the Oxidation Reactions Promoted by Trivalent Iodine Reagents

  • Received Date: 14 February 2018
    Accepted Date: 17 April 2018

Figures(3)

  • Trivalent iodine reagents have similar reaction properties to transition metals such as mercury, titanium, and lead, and have the advantage of environment-friendly, low cost, mild reaction conditions, easy handling and commericial availaiblity. These compounds are widely used in organic synthesis, especially, as efficient selective oxidants that have attracted the attention of a large number of organic chemists. In this review, 14 kinds of oxidation reactions mediated by trivalent iodine reagents, including alcohol oxidation, oxidative functionalization of carbonyl compounds, to selenylation reactions and bismuthlation reactions etc., are briefly summarized.
  • 加载中
    1. [1]

      T Wirth. Hypervalent Iodine Chemistry:Modern Developments in Organic Synthesis, Topics in Current Chemistry, 2003, vol. 224, Springer, Berlin.

    2. [2]

      J Eljo, M S Carle, G K Murphy. Synlett, 2017, 28(20):2871~2875. 

    3. [3]

      N N Karade, V H Budhewar, A N Katkar et al. Arkivoc, 2006, (11):162~167.

    4. [4]

      M Kida, T Sueda, S Goto et al. Chem. Commun., 1996, 16:1933~1934.

    5. [5]

      A De Mico, R Margarita, L Parlanti et al. J. Org. Chem., 1997, 62(20):6974~6977. 

    6. [6]

      G Piancatelli, F Leonelli, N Do et al. Org. Synth., 2006, 83:18~23. 

    7. [7]

      X Q Li, W K Wang, C Zhang. Adv. Synth. Catal., 2009, 351(14-15):2342~2350. 

    8. [8]

      C Zhang, W K Wang, T He. Synthesis, 2012, 44(19):3006~3014. 

    9. [9]

      H Tohma, S Takizawa, T Maegawa et al. Angew. Chem., 2000, 112(7):1362~1364. 

    10. [10]

    11. [11]

      S Hara, T Hatakeyama, S Q Chen et al. J. Fluorine Chem., 1998, 87(2):189~192. 

    12. [12]

      M Yoshida, K Fujikawa, S Sato et al. Arkivoc, 2003, vi:36~42.

    13. [13]

    14. [14]

      J Tao, R Tran, G K Murphy. J. Am. Chem. Soc., 2013, 135(44):16312~16315. 

    15. [15]

      T V Moskovkina, V I Vysotskii. Org. Khim., 1991, 27(4):833~836.

    16. [16]

      H Ibrahim, F Kleinbeck, A Togni. Helv. Chim. Acta, 2004, 87(3):605~610. 

    17. [17]

      N A Magnus, L Ducry, V Rolland et al. J. Chem. Soc. Perkin Transac., 1997, 16:2313~2318.

    18. [18]

    19. [19]

      I Tellitu, E Dominguez. Tetrahedron, 2008, 64(10):2465~2470. 

    20. [20]

      M Celik, C Alp, B Coskun et al. Tetrahed. Lett., 2006, 47(22):3659~3663. 

    21. [21]

      W Zhong, J Yang, X Meng et al. J. Org. Chem., 2011, 76(24):9997~10004. 

    22. [22]

      M Fujita, Y Ookubo, T Sugimura. Tetrahed. Lett., 2009, 50(12):1298~1300. 

    23. [23]

      X L Wu, G W Wang. Tetrahedron, 2009, 65(43):8802~8807. 

    24. [24]

      A Kirschning, E Kunst, M Ries et al. Arkivoc, 2003, (6):145~163.

    25. [25]

      A Y Koposov, V V Boyarskikh, V V Zhdankin. Org. Lett., 2004, 6(20):3613~3615. 

    26. [26]

      K C Nicolaou, N L Simmons, Y Ying et al. J. Am. Chem. Soc., 2011, 133(21):8134~8137. 

    27. [27]

      L Liu, D Zhang-Negrerie, Y Du et al. Org. Lett., 2014, 16(2):436~439. 

    28. [28]

      L Rebrovic, G F Koser. J. Org. Chem., 1984, 49(24):4700~4702. 

    29. [29]

      M Hachiya, M Ito, T Matsuo et al. Org. Lett., 2011, 13(10):2666~2669. 

    30. [30]

      M A Ciufolini, N A Broun, S Canesi. Synthesis, 2007, 24:3759~3772.

    31. [31]

      C Sabot, B Commare, M A Duceppe et al. Synlett, 2008, 20:3226~3230.

    32. [32]

    33. [33]

      M Kirihara, S Yokoyama, H Kakuda et al. Tetrahedron, 1998, 54(46):13943~13954. 

    34. [34]

    35. [35]

      G W Gribble. Hofmann rearrangement. Name Reactions for Homologations-Part Ⅱ, Wiley:Hoboken, NJ2009:164~199.

    36. [36]

      M Kalesse, D Landsberg. Synlett, 2010, 7:1104~1106.

    37. [37]

      M W Justik, G F Koser. Tetrahed. Lett., 2004, 45(32):6159~6163. 

    38. [38]

      H R Khatri, J Zhu. Chem. Eur. J., 2012, 18(39):12232~12236. 

    39. [39]

      T Abo, M Sawaguchi, H Senboku et al. Molecules, 2005, 10(1):183~189. 

    40. [40]

      Y Sun, X Huang, X Li et al. Adv. Synth. Catal., 2018, 360(6):1082~1087. 

    41. [41]

      L F Silva, Jr., R S Vasconcelos, M A Nogueira. Org. Lett., 2008, 10(5):1017~1020.

    42. [42]

      L Kurti, P Herczegh, J Visy et al. J. Chem. Soc. Perkin Transac, 1999, 4:379~380.

    43. [43]

      K C Guerard, C Chapelle, M A Giroux et al. Org. Lett., 2009, 11(20):4756~4759. 

    44. [44]

      G Jacquemot, S Canesi. J. Org. Chem., 2012, 77(17):7588~7594. 

    45. [45]

      H Fujioka, H Komatsu, T Nakamura et al. Chem. Commun., 2010, 46(23):4133~4135. 

    46. [46]

      K Hata, H Hamamoto, Y Shiozaki et al. Tetrahedron, 2007, 63(19):4052~4060. 

    47. [47]

      T Dohi, M Ito, I Itani et al. Org. Lett., 2011, 13(23):6208~6211. 

    48. [48]

      H Tohma, M Iwata, T Maegawa et al. Tetrahed. Lett., 2002, 43(50):9241~9244. 

    49. [49]

      S R Taylor, A T Ung, S G Pyne et al. Tetrahedron, 2007, 63(46):11377~11385. 

    50. [50]

      Y Kita, H Watanabe, M Egi et al. J. Chem. Soc. Perkin Transac., 1998, 4:635~636. 

    51. [51]

      Y Kita, M Egi, M Ohtsubo et al. Chem. Commun., 1996, 19:2225~2226.

    52. [52]

    53. [53]

      T Dohi, K Morimoto, Y Kiyono et al. Chem. Commun., 2005, (23):2930~2932. 

    54. [54]

    55. [55]

      Y Kita, K Morimoto, M Ito et al. J. Am. Chem. Soc., 2009, 131(5):1668~1669. 

    56. [56]

      S Rihn, M Erdem, A De Nicola et al. Org. Lett., 2011, 13(8):1916~1919. 

    57. [57]

    58. [58]

      J A Souto, Y Gonzalez, A Iglesias et al. Chem. Asian J., 2012, 7(5):1103~1111. 

    59. [59]

      D J Chen, Z C Chen. Tetrahed. Lett., 2000, 41(38):7361~7363. 

    60. [60]

      A De Mico, R Margarita, A Mariani et al. Chem. Commun., 1997, 13:1237~1238. 

    61. [61]

      M Bruno, R Margarita, L Parlanti et al. Tetrahed. Lett., 1998, 39(22):3847~3848. 

    62. [62]

      M Tingoli, M Tiecco, L Testaferri et al. Synth. Commun., 1998, 28(10):1769~1778. 

    63. [63]

      M Kamlar, J Vesely. Tetrahed-Asym., 2013, 24(5-6):254~259. 

    64. [64]

      D W Chen, Z C Chen. Synth. Commun., 1995, 25(11):1605~1616. 

    65. [65]

      S Combes, J P Finet. Tetrahedron, 1998, 54(17):4313~4318. 

  • 加载中
    1. [1]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    2. [2]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    6. [6]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    12. [12]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    13. [13]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    14. [14]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    15. [15]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    19. [19]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(248)
  • Abstract views(8343)
  • HTML views(2951)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return