Citation: LI Shu-na, ZHU Gang, SHI Qi, DU Wei, ZHU Hua-qing, WANG Rui-yi, LI Zhi-kai, ZHANG Ya-gang. Performance of CO preferential oxidation of CeO2-NiO nanorod catalyst in H2-rich stream[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1111-1119. shu

Performance of CO preferential oxidation of CeO2-NiO nanorod catalyst in H2-rich stream

  • Corresponding author: ZHU Hua-qing, lishuna165@126.com ZHANG Ya-gang, zhhq@sxicc.ac.cn; zhangyg04@126.com
  • Received Date: 19 April 2019
    Revised Date: 28 June 2019

    Fund Project: the National Natural Science Foundation of China 21703276the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2017CGWL24The project was supported by the National Natural Science Foundation of China (51704240, 21703276, 51602253), the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City (2017CGWL24, 2017CGWL10, 2019KJWL08, 2019KJWL09, 2016CXWL08), Tianyuan Open Fund of the Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province (tywl2019-08)Tianyuan Open Fund of the Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province tywl2019-08the National Natural Science Foundation of China 51704240the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2019KJWL08the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2017CGWL10the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2019KJWL09the National Natural Science Foundation of China 51602253the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2016CXWL08

Figures(9)

  • A series of nanorod CeO2(x)-NiO composite oxides catalysts with different Ce/Ni molar ratios have been synthesized by hydrothermal method. Their morphology and structure were characterized by N2 sorption-desorption, XRD, TEM, Raman spectra, H2-TPR and XPS. The effects of Ce/Ni molar ratio on the morphology and catalytic activity of CeO2(x)-NiO composite oxides catalysts for CO preferential oxidation (CO PROX) in hydrogen-rich stream were studied. TEM results indicate that nanorod CeO2(x)-NiO composite oxides catalysts with different sizes can be obtained by adjusting Ce/Ni molar ratio. H2-TPR results show that introduction of NiO into CeO2 enhance the redox ability of CeO2(x)-NiO composite oxides catalysts. Raman spectra and XPS results indicate that CeO2(x)-NiO composite oxides catalysts with low nickel content have much more active oxygen species and oxygen vacancies, which are beneficial to improve its catalytic performance. CeO2(0.89)-NiO nanorod catalysts with low nickel content exhibits the highest activity and CO2 selectivity, the CO conversion is 100% and the CO2 selectivity is about 52% in the reaction temperature range of 170-220 ℃ for CO PROX in hydrogen-rich stream.
  • 加载中
    1. [1]

      WANG Fang, LÜ Gong-xuan. Influence of promoters on active centers over nobel metal catalysts for CO selective oxidation[J]. Prog Chem, 2010,22(8):1538-1549.  

    2. [2]

      HORNÉS A, HUNGRÍA A B, BERA P, LÓPEZ CÁMARA A, FERNÁNDEZ-GARCÍA M, MARTÍNEZ-ARIAS A, BARRIO L, ESTRELLA M, ZHOU G, FONSECA J J, HANSON J C, RODRIGUEZ J A. Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream[J]. J Am Chem Soc, 2010,132(1):34-35. doi: 10.1021/ja9089846

    3. [3]

      ZHU H Q, QIN Z F, SHAN W J, SHEN W J, WANG J G. Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments[J]. J Catal, 2005,233(1):41-50.  

    4. [4]

      BAO H Z, CHEN X, FANG J, JIANG Z Q, HUANG W X. Structure-activity relation of Fe2O3-CeO2 composite catalysts in CO oxidation[J]. Catal Lett, 2018,125(1/2):160-167.  

    5. [5]

      LIN S J, SU G J, ZHENG M H, JI D K, JIA M K, LIU Y X. Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1, 2, 4-trichlorobenzene[J]. Appl Catal B:Environ, 2012,123/124:440-447. doi: 10.1016/j.apcatb.2012.05.011

    6. [6]

      AKANDE A J, IDEM R O, DALAI A K. Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production[J]. Appl Catal A:Gen, 2005,287(2):159-175. doi: 10.1016/j.apcata.2005.03.046

    7. [7]

      MARIÑO F, CERRELLA E, DUHALDE S, JOBBAGY M, LABORDE M. Hydrogen from steam reforming of ethanol:Characterization and performance of copper-nickel supported catalysts[J]. Int J Hydrogen Energy, 1998,23(12):1095-1101. doi: 10.1016/S0360-3199(97)00173-0

    8. [8]

      SHAN W J, LUO M F, YING P L, SHEN W J, LI C. Reduction property and catalytic activity of Ce1-xNixO2 mixed oxide catalysts for CH4 oxidation[J]. Appl Catal A:Gen, 2003,246(1):1-9. doi: 10.1016/S0926-860X(02)00659-2

    9. [9]

      LIU Y M, WANG L C, CHEN M, XU J, CAO Y, HE H Y, FAN K N. Highly selective Ce-Ni-O catalysts for efficient low temperature oxidative dehydrogenation of propane[J]. Catal Lett, 2009,130(3/4):350-354.  

    10. [10]

      ZHONG L S, HU J S, CAO A M, LIU Q, SONG W G, WAN L J. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J]. Chem Mater, 2007,19(7):1648-1655. doi: 10.1021/cm062471b

    11. [11]

      LI T Y, XIANG G L, ZHANG J, WANG X. Enhanced catalytic performance of assembled ceria necklace nanowires by Ni doping[J]. Chem Commun, 2011,47(21):6060-6062. doi: 10.1039/c1cc11547b

    12. [12]

      ZHANG D S, FU H X, SHI L Y, PAN C S, LI Q, CHU Y L, YU W J. Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol[J]. Inorg Chem, 2007,46(7):2446-2451. doi: 10.1021/ic061697d

    13. [13]

      LI C R, SUN Q T, LU N P, CHEN B Y, DONG W Y. A facile route for the fabrication of CeO2 nanosheets via controlling the morphology of CeOHCO3 precursors[J]. J Cryst Growth, 2012,343(1):95-100.  

    14. [14]

      HU F Y, CHEN J J, PENG Y, SONG H, LI K Z, LI J H. Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion[J]. Chem Eng J, 2018,331:425-434. doi: 10.1016/j.cej.2017.08.110

    15. [15]

      ZHOU K B, WANG X, SUN X M, PENG Q, LI Y D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. J Catal, 2005,229(1):206-212.  

    16. [16]

      SI R, FLYTZANI-STEPHANOPOULOS M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angew Chem Int Ed, 2008,47(15):2884-2887. doi: 10.1002/anie.200705828

    17. [17]

      MAITARAD P, HAN J, ZHANG D, SHI L, NAMUANGRUK S, RUNGROTMONGKOL T. Structure-activity relationships of NiO on CeO2 nanorods for the selective catalytic reduction of NO with NH3:Experimental and DFT studies[J]. J Phys Chem C, 2014,118(118):9612-9620.  

    18. [18]

      ZHANG X, HOUSE S D, TANG Y, NGUYEN L, LI Y, OPALADE A A, YANG J C, SUN Z, FENG TAO F. Complete oxidation of methane on NiO nanoclusters supported on CeO2 nanorods through synergistic effect[J]. ACS Sustainable Chem Eng, 2018,6(5):6467-6477. doi: 10.1021/acssuschemeng.8b00234

    19. [19]

      TANG C J LI J C, YAO X J, SUN J F, CAO Y, ZHANG L, GAO F, DENG Y, DONG L. Mesoporous NiO-CeO2 catalysts for CO oxidation:Nickel content effect and mechanism aspect[J]. Appl Catal A:Gen, 2015,494:77-86. doi: 10.1016/j.apcata.2015.01.037

    20. [20]

      LI Shu-na, SONG Pei, ZHANG Jin-li, HE Xiao-xia, XIE Yi-xin, ZHANG Ya-gang, WANG Rui-yi, LI Zhi-kai, ZHU Hua-qing. Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion[J]. J Fuel Chem Technol, 2018,46(5):615-624. doi: 10.3969/j.issn.0253-2409.2018.05.015

    21. [21]

      LI S N, ZHU H Q, QIN Z F, WANG G F, ZHANG Y G, WU Z W, LI Z K, CHEN G, DONG W W, WU Z H, ZHENG L R, ZHANG J, HU T D, WANG J G. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B:Environ, 2014,144(2):498-506.  

    22. [22]

      SUN Jing-fang, GE Cheng-yan, YAO Xiao-jiang, CAO Yuan, ZHANG Lei, TANG Chang-jin, DONG Lin. Preparation of NiO/CeO2 catalysts by solid state impregnation and their application in CO oxidation[J]. Acta Phys-Chim Sin, 2013,29(11):2451-2458. doi: 10.3866/PKU.WHXB201309041

    23. [23]

      BENJARAM M R, ATAULLAH K, YUSUKE Y, TETSUHIKO K, STÉPHANE L, JEAN-CLAUDE V. Structural characterization of CeO2-MO2 (M=Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques[J]. J Phys Chem B, 2003,107(41):11475-11484. doi: 10.1021/jp0358376

    24. [24]

      NI X M, ZHAO Q B, ZHOU F, ZHENG H G, CHENG J, LI B B. Synthesis and characterization of NiO strips from a single source[J]. J Cryst Growth, 2006,289(1):299-302.  

    25. [25]

      MAHAMMADUNNISA Sk, MANOJ K, LINGAIAH N, SUBRAHMANYAM C. NiO/Ce1-xNixO2-δ as an alternative to noble metal catalysts for CO oxidation[J]. Catal Sci Technol, 2013,3(3):730-736. doi: 10.1039/C2CY20641B

    26. [26]

      SOLSONA B, CONCEPCIÓN P, HERNÁNDEZ S, DENJAMIN B, LÓPEZ NIETO J. Oxidative dehydrogenation of ethane over NiO-CeO2 mixed oxides catalysts[J]. Catal Today, 2012,180(1):51-58. doi: 10.1016/j.cattod.2011.03.056

    27. [27]

      ŚWIATOWSKA J, LAIR V, PEREIRA-NABAIS C, COTE G, MARCUS P, CHAGNES A. XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries[J]. Appl Surf Sci, 2011,257(21):9110-9119. doi: 10.1016/j.apsusc.2011.05.108

    28. [28]

      BEHZAD N, MEHRAN R, EBRAHIM N. Preparation of highly active and stable NiO-CeO2 nanocatalysts for CO selective methanation[J]. Int J Hydrogen Energy, 2015,40(27):8539-8547. doi: 10.1016/j.ijhydene.2015.04.127

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    3. [3]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    4. [4]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    12. [12]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    13. [13]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    17. [17]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    18. [18]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    19. [19]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(16)
  • Abstract views(877)
  • HTML views(213)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return