Citation: Sun Yanxia, Zhou Yuan, Shen Yue, Zhang Lijuan. Lithium Rich Ternary Cathode Materials for Dynamical Type Lithium Ion Battery[J]. Chemistry, ;2017, 80(1): 34-40. shu

Lithium Rich Ternary Cathode Materials for Dynamical Type Lithium Ion Battery

  • Corresponding author: Zhou Yuan, zhouy@isl.ac.cn
  • Received Date: 21 June 2016
    Accepted Date: 26 August 2016

Figures(4)

  • With the rapid development of electric vehicles, smart grid and large-scale energy storage areas, the higher requirements for energy and power density of the lithium ion battery have been put forward. Therefore, developing a new type of cathode material which has good stability and high specific capacity is the key to further improve the energy density for lithium ion battery. Among different kinds of cathode materials, lithium rich ternary cathode material xLi2MnO3·(1-x) LiMn1/3Ni1/3Co1/3O2(0.1≤x≤0.5) is considered to be the most promising one due to its high specific capacity, high voltage and friendly to environment. In this paper, the research progress in lithium rich ternary cathode material and its crystal structure and electrochemical characteristics as well as the existing problems were introduced. The future development trends of xLi2MnO3·(1-x) LiMn1/3Ni1/3Co1/3O2(0.1≤x≤0.5) was also expected.
  • 加载中
    1. [1]

      Z Zheng, W B Hua, S X Liao et al. RSC Adv., 2015, 5(72):58528-58535. 

    2. [2]

      J Zhao, Z Wang, H Guo et al. Ceram. Int., 2015, 41(9):11396-11401. 

    3. [3]

      E Zhao, X Liu, Z Hu et al. J. Power Sources, 2015, 294:141-149. 

    4. [4]

      Y Zhang, Z B Wang, J Lei et al. Ceram. Int., 2015, 41(7):9069-9077. 

    5. [5]

      Y Zhang, P Hou, E Zhou et al. J. Power Sources, 2015, 292:58-65. 

    6. [6]

    7. [7]

      Y Zhao, M Xia, X Hu et al. Electrochim. Acta, 2015, 174:1167-1174. 

    8. [8]

      K Numata, C Sakaki, S Yamanaka. Chem. Lett., 1997, (8):725-726.

    9. [9]

      K Numata, C Sakaki, S Yamanaka. Solid State Ionics, 1999, 117(3):257-263.

    10. [10]

      C Johnson, S Korte, J Vaughey et al. J. Power Sources, 1999, 81:491-495.

    11. [11]

      B Ammundsen, J Paulsen. Adv. Mater., 2001, 13(12-13):943-956. 

    12. [12]

      M Tabuchi, A Nakashima, H Shigemura et al. J. Electrochem. Soc., 2002, 149(5):A509-A524.

    13. [13]

      Z Lu, J Dahn. J. Electrochem. Soc., 2001, 148(7):A710-A715.

    14. [14]

      Z Lu, D Mac Neil, J Dahn. Electrochem. Solid-State Lett., 2001, 4(11):A191-A194.

    15. [15]

      Z Lu, L Beaulieu, R Donaberger et al. J. Electrochem. Soc., 2002, 149(6):A778-A791.

    16. [16]

      Z Lu, J Dahn. J. Electrochem. Soc., 2002, 149(11):A1454-A1459.

    17. [17]

      Z Lu, J R Dahn. J. Electrochem. Soc., 2002, 149(7):A815-A822.

    18. [18]

      Z Lu, R Donaberger, C Thomas et al. J. Electrochem. Soc., 2002, 149(8):A1083-A1091.

    19. [19]

      S H Lee, J S Moon, M S Lee et al. J. Power Sources, 2015, 281:77-84. 

    20. [20]

      A Manthiram, J C Knight, S T Myung et al. Adv. Energy Mater., 2016, 6(1):1501010. 

    21. [21]

      Z Lu, Z Chen, J R Dahn. Chem. Mater., 2003, 15(16):3214-3220. 

    22. [22]

      K A Jarvis, Z Deng, L F Allard et al. Chem. Mater., 2011, 23(16):3614-3621. 

    23. [23]

      M M Thackeray, S H Kang, C S Johnson et al. J. Mater. Chem., 2007, 17(30):3112-3125. 

    24. [24]

      F Weill, N Tran, L Croguennec et al. J. Power Sources, 2007, 172(2):893-900. 

    25. [25]

      A R Armstrong, M Holzapfel, P Novak et al. J. Am. Chem. Soc., 2006, 128:8694-8698. 

    26. [26]

      J Breger, M Jiang, N Dupre et al. J. Solid State Chem., 2005, 178(9):2575-2585. 

    27. [27]

      M Thackeray, S H Kang, C Johnson et al. Electrochem. Commun., 2006, 8(9):1531-1538. 

    28. [28]

      M Xu, Z Chen, L Li et al. J. Power Sources, 2015, 281:444-454. 

    29. [29]

      M Oishi, T Fujimoto, Y Takanashi et al. J. Power Sources, 2013, 222:45-51. 

    30. [30]

      Z Lu, J R Dahn. J. Electrochem. Soci., 2002, 149(7):A815.

    31. [31]

      M Hu, X Pang, Z Zhou. J. Power Sources, 2013, 237:229-242. 

    32. [32]

      T F Yi, W Tao, B Chen et al. Electrochim. Acta, 2016, 188:686-695. 

    33. [33]

      H Moriwake, A Kuwabara, C A Fisher et al. Adv. Mater., 2013, 25(4):618-622. 

    34. [34]

      M S Islam, C A J Fisher. Chem. Soc. Rev., 2014, 43(1):185-204. 

    35. [35]

      Z Huang, Z Wang, Q Jing et al. Electrochim. Acta, 2016, 192:120-126. 

    36. [36]

      M Dixit, M Kosa, O S Lavi et al. Phys. Chem. Chem. Phys., 2016, 18(9):6799-6812. 

    37. [37]

      C Jiao, L Wang, Y Zuo et al. Solid State Ionics, 2015, 277:50-56. 

    38. [38]

      Y Idemoto, T Matsui. Solid State Ionics, 2008, 179(17-18):625-635. 

    39. [39]

      S Kandhasamy, P Singh, S Thurgate et al. Electrochim. Acta, 2012, 82:302-308. 

    40. [40]

      G Z Wei, X Lu, F S Ke et al. Adv. Mater., 2010, 22(39):4364-4367. 

    41. [41]

      S H Park, C S Yoon, S G Kang et al. Electrochim. Acta, 2004, 49(4):557-563. 

    42. [42]

      S Oh. Solid State Ionics, 2004, 171(3-4):167-172. 

    43. [43]

      X Jiang, Z Wang, D Rooney et al. Electrochim. Acta, 2015, 160:131-138. 

    44. [44]

      B Song, Z Liu, M O Lai et al. Phys. Chem. Chem. Phys., 2012, 14(37):12875. 

    45. [45]

      M N Ates, Q Jia, A Shah et al. J. Electrochem. Soc., 2013, 161(3):A290-A301.

    46. [46]

      Y Chen, G Xu, J Li et al. Electrochim. Acta, 2013, 87:686-692. 

    47. [47]

      C Zhao, Q Shen. Curr. Appl. Phys., 2014, 14(12):1849-1853. 

    48. [48]

      T Tang, H L Zhang. Electrochim. Acta, 2016, 191:263-269. 

    49. [49]

      X Hou, Y Huang, S Ma et al. Mater. Res. Bull., 2015, 63:256-264. 

    50. [50]

      J Zhang, Z Lei, J Wang et al. ACS Appl. Mater. Interf., 2015, 7(29):15821-15829. 

    51. [51]

      G Ma, S Li, W Zhang et al. Angew. Chem. Int. Ed., 2016, 55(11):3667-3671. 

    52. [52]

      Y Bai, Y Li, C Wu et al. Energy Technol., 2015, 3(8):843-850. 

    53. [53]

      C Johnson, J Kim, C Lefief et al. Electrochem. Commun., 2004, 6(10):1085-1091. 

    54. [54]

      C S Johnson, N Li, C Lefief et al. Chem. Mater., 2008, 20(19):6095-6106. 

    55. [55]

      S H Kang, M Thackeray. J. Electrochem. Soc., 2008, 155(4):A269-A275.

    56. [56]

      A Ito, D Li, Y Ohsawa et al. J. Power Sources, 2008, 183(1):344-346. 

    57. [57]

      Y Denis, K Yanagida, H Nakamura. J. Electrochem. Soc., 2010, 157(11):A1177-A1182.

    58. [58]

      J S Kim, C S Johnson, J T Vaughey et al. J. Power Sources, 2006, 153(2):258-264. 

    59. [59]

      M A Mezaal, L Qu, G Li et al. RSC Adv., 2015, 5(113):93048-93056. 

    60. [60]

      W He, D Yuan, J Qian et al. J. Mater. Chem. A, 2013, 1(37):11397-11403. 

    61. [61]

      Q Li, G Li, C Fu et al. ACS Appl. Mater. Interf., 2014, 6(13):10330-10341. 

    62. [62]

      A Dianat, N Seriani, M Bobeth et al. J. Mater. Chem. A, 2013, 1(32):9273. 

    63. [63]

      Y Weng, S Xu, G Huang et al. J. Hazard. Mater., 2013, 246-247:163-172.

    64. [64]

      W K Kim, D W Han, W H Ryu et al. J. Alloys Compd., 2014, 592:48-52. 

    65. [65]

      H Z Zhang, F Li, G L Pan et al. J. Electrochem. Soc., 2015, 162(9):A1899-A1904.

    66. [66]

      S J Shi, J P Tu, Y Y Tang et al. Electrochim. Acta, 2013, 88:671-679. 

    67. [67]

      E Han, Y Li, L Zhu et al. Solid State Ionics, 2014, 255:113-119. 

    68. [68]

      J Zhao, Y Wang. Nano Energy, 2013, 2(5):882-889. 

    69. [69]

      J Lu, Q Peng, W Wang et al. J. Am. Chem. Soc., 2013, 135(5):1649-1652. 

    70. [70]

      B Qiu, J Wang, Y Xia et al. ACS Appl. Mater. Interf., 2014, 6(12):9185-9193. 

    71. [71]

      C Lu, H Wu, Y Zhang et al. J. Power Sources, 2014, 267:682-691. 

    72. [72]

      S H Kang, M M Thackeray. Electrochem. Commun., 2009, 11(4):748-751. 

    73. [73]

      Q Y Wang, J Liu, A V Murugan et al. J. Mater. Chem., 2009, 19(28):4965. 

    74. [74]

      H C Shin, W I Cho, H Jang. Electrochim. Acta, 2006, 52(4):1472-1476. 

    75. [75]

      C Ban, Z Li, Z Wu et al. Adv. Energy Mater., 2011, 1(1):58-62. 

    76. [76]

      B Song, MO Lai, Z Liu et al. J. Mater. Chem. A, 2013, 1(34):9954. 

    77. [77]

      S S Jan, S Nurgul, X Shi et al. Electrochim. Acta, 2014, 149:86-93. 

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    3. [3]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    6. [6]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    7. [7]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    8. [8]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    11. [11]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    15. [15]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    16. [16]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    17. [17]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    20. [20]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

Metrics
  • PDF Downloads(43)
  • Abstract views(3799)
  • HTML views(1659)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return