Citation: HUANG Yong-da, HU Hong-yun, GONG Hong-yu, LIU Hui-min, FU Biao, LI Shuai, LUO Guang-qian, YAO Hong. Research progress on emission and control technologies of arsenic, selenium and lead in coal-fired power plants[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1281-1297. shu

Research progress on emission and control technologies of arsenic, selenium and lead in coal-fired power plants

  • Corresponding author: YAO Hong, hyao@hust.edu.cn
  • Received Date: 10 September 2020
    Revised Date: 22 October 2020

    Fund Project: The project was supported by the National Key R & D Program of China (2018YFB0605103)the National Key R & D Program of China 2018YFB0605103

Figures(11)

  • Coal is the most significant source of energy generation in China, but the high content of arsenic/selenium/lead in coal has made coal-fired power plants become one of the main anthropogenic emission sources of them. To solve the serious problem on arsenic/selenium/lead pollution from coal-fired power plants, this paper firstly introduces the discharge and harmfulness of arsenic/selenium/lead released from coal-fired power plants, and summarizes the relevant domestic and foreign regulations on heavy metals emission control, then points out that it is necessary to control their emission from coal-fired power plants in China. Secondly, the migration and transformation behaviors of arsenic/selenium/lead during coal combustion are illustrated from the perspectives of occurrence form, speciation transformation and mass distribution, focusing on their speciation characteristics and size distribution in particulate matters. Finally, the control technologies pre-, in- and post-combustion are reviewed, and the research progress on their removal by adsorbents and air pollution control devices (APCDs) is described in detail. Meanwhile, the potential for strengthening the removal by electrostatic precipitators equipped with low temperature economizer and agglomeration technologies is discussed. In conclusion, it is aimed to provide reference and guidance for realization of ultra-low emission of arsenic/selenium/lead in coal-fired power plants.
  • 加载中
    1. [1]

      Ministry of Natural Resources of the People's Republic of China. China Mineral Resources 2019. http://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/201910/t20191022_2473040.html.

    2. [2]

      XU M, YAN R, ZHEN C, QIAO Y, HAN J, SHENG C. Status of trace element emission in a coal combustion process:A review[J]. Fuel Process Technol, 2003,85:215-237.

    3. [3]

      ZHAO Y, YANG J, MA S, ZHANG S, LIU H, GONG B, ZHANG J, ZHENG C. Emission controls of mercury and other trace elements during coal combustion in China:A review[J]. Int Geol Rev, 2017,60(5/6):638-670.  

    4. [4]

      CHENG S. Heavy metal pollution in China:Origin, pattern and control[J]. Environ Sci Pollut Res Int, 2003,10(3):192-198.  

    5. [5]

      TCHOUNWOU P B, YEDJOU C G, PATLOLLA A K, SUTTON D J. Heavy metal toxicity and the environment[J]. Exp Suppl, 2012,101:133-164.  

    6. [6]

      TIAN H Z, ZHU C Y, GAO J J, CHENG K, HAO J M, WANG K, HUA S B, WANG Y, ZHOU J R. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China:Historical trend, spatial distribution, uncertainties, and control policies[J]. Atmos Chem Phys, 2015,15(17):10127-10147.  

    7. [7]

      DAI S, LUO Y, SEREDIN V V, WARD C R, HOWER J C, ZHAO L, LIU S, ZHAO C, TIAN H, ZOU J. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China:Enrichment and occurrence modes of minerals and trace elements[J]. Int J Coal Geol, 2014,122:110-128.  

    8. [8]

      TIAN H Z, LU L, HAO J M, GAO J J, CHENG K, LIU K Y, QIU P P, ZHU C Y. A review of key hazardous trace elements in Chinese coals:Abundance, occurrence, behavior during coal combustion and their environmental impacts[J]. Energy Fuels, 2013,27(2):601-614.  

    9. [9]

      FINKELMAN R B. Trace and Minor Elements in Coal[M]. US:Organic Geochemistry, Springer, 1993.

    10. [10]

      RILEY K W, FRENCH D H, FARRELL O P, WOOD R A, HUGGINS F E. Modes of occurrence of trace and minor elements in some Australian coals[J]. Int J Coal Geol, 2012,94:214-224.  

    11. [11]

      RILEY K W, FRENCH D H, LAMBROPOULOS N A, FARRELL O P, WOOD R A, HUGGINS F E. Origin and occurrence of selenium in some Australian coals[J]. Int J Coal Geol, 2007,72(2):72-80.  

    12. [12]

      SWAINE D J, GOODARZI F. Environmental aspects of trace elements in coal[M]. Dordrecht Kluwer, 1995.

    13. [13]

      MUKHERJEE S, SRIVASTAVA S K. Trace elements in high-sulfur assam coals from the Makum coalfield in the northeastern region of India[J]. Energy Fuels, 2005,19(3):882-891.  

    14. [14]

      KETRIS M P, YUDOVICH Y E. Estimations of Clarkes for carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. Int J Coal Geol, 2009,78(2):135-148.  

    15. [15]

      National emission standards for hazardous air pollutants from coaland oil-fired electric utility steam generating units and standards of performance for fossil-fuel-fired electric utility, industrial-commercial- institutional, and small industrial[S]. Federal Register, 2016.

    16. [16]

      NIU Y, LIU X, WANG S, HUI S E, SHADDIX C R. A numerical investigation of the effect of flue gas recirculation on the evolution of ultra-fine ash particles during pulverized coal char combustion[J]. Combust Flame, 2017,184:1-10.  

    17. [17]

      WEI Q, DAI S, LEFTICARIU L, COSTIN G. Electron probe microanalysis of major and trace elements in coals and their low-temperature ashes from the Wulantuga and Lincang Ge ore deposits, China[J]. Fuel, 2018,215:1-12.  

    18. [18]

      LIU Jing, LU Xiao-hua, GUO Xin. Speciation analysis of arsenic and mercury in coal[J]. J Huazhong Univ Sci Technol, 2000,28(7):71-73.  

    19. [19]

      SENIOR C L, ZENG T, CHE J, AMES M R, SAROFIM A F, OLMEZ I, HUGGINS F E, SHAH N, HUFFMAN G P, KOLKER A, MROCZKOWSKI S, PALMER C, FINKELMAN R. Distribution of trace elements in selected pulverized coals as a function of particle size and density[J]. Fuel Process Technol, 2000,63(2):215-241.  

    20. [20]

      KOLKER A, SAROFIM A, PALMER C A, SENIOR C L, HUGGINS F E. Toxic substances from coal combustion phase coal selection and characterization[R]. 1998.

    21. [21]

      GUO Xin, ZHENG Cuo-guang, LIU Ying-hui, LIU Jing, LU Xiao-hua. The study of the mode of occurrence of mercury, arsenic and selenium in coal[J]. J Eng Therm, 2001,22:763-766.  

    22. [22]

      SWAINE D J. Trace Elements in Coal[M]. Netherlands:Elsevier Ltd, 1990.

    23. [23]

      SAVAGE K S, TINGLE T N, PEGGY A O, WAYCHUNAS G A, BIRD D K. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California[J]. Appl Geochem, 2000,15(8):1219-1244.  

    24. [24]

      HUGGINS F E, HUFFMAN G P. Modes of occurrence of trace elements in coal from XAFS spectroscopy[J]. Int J Coal Geol, 1994,32(1/4):31-53.  

    25. [25]

      FINKELMAN R B, Modes of occurrence of environmentally-sensitive trace elements in coal. in environmental aspects of trace elements in coal, 1995, 24-50.

    26. [26]

      LIU Rui-qing. A study on thermal stability and transformation behavior of arsenic, selenium and lead during coal conversion[D]. Taiyuan: Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, 2009.

    27. [27]

      LIU Rui-qing, YANG Jian-li, LIU Zhen-yu. Influence of thermal treatment condition on release behavior of selenium in coals[J]. J Fuel Chem Technol, 2011,39(4):241-245.  

    28. [28]

      ZHOU C, LIU G, XU Z, SUN H, LAM P K S. Effect of ash composition on the partitioning of arsenic during fluidized bed combustion[J]. Fuel, 2017,204:91-97.  

    29. [29]

      ZHOU C, LIU G, XU Z, SUN H, KWAN SING LAM P. Retention mechanisms of ash compositions on toxic elements(Sb, Se and Pb) during fluidized bed combustion[J]. Fuel, 2018,213:98-105.  

    30. [30]

      SHEN F, LIU J, ZHANG Z, DAI J. Online analysis and kinetic behavior of arsenic release during coal combustion and pyrolysis[J]. Environ Sci Technol, 2015,49(22):13716-23.  

    31. [31]

      LIU H, WANG C, SUN X, ZHANG Y, ZOU C. Volatilization of arsenic in coal during isothermal oxy-fuel combustion[J]. Energy Fuels, 2016,30(4):3479-3487.  

    32. [32]

      SHEN F, LIU J, DONG Y, GU C. Insights into the effect of chlorine on arsenic release during MSW incineration:An on-line analysis and kinetic study[J]. Waste Manag, 2018,75:327-332.  

    33. [33]

      WINTER R M, MALLEPALLI R R, HELLEM K P, SZYDLO S W. Determination of As, Cd, Cr, and Pb species formed in a combustion environment[J]. Combust Sci Technol, 1994,101(1/6):45-58.  

    34. [34]

      FRANDSEN F, DAM-JOHANSEN K, RASMUSSEN P. Trace elements from combustion and gasification of coal-An equilibrium approach[J]. Prog Energ Combust Sci, 1994,20(2):115-138.  

    35. [35]

      ZHANG Xiao-Feng, YAO Qiang. Thermodynamic equilibrium analysis for reaction between sorbents and lead[J]. J Eng Therm, 2006,27(6):1054-1056.  

    36. [36]

      YAN R. Possible interactions between As, Se and Hg during coal combustion[J]. Combust Flame, 2000120.  

    37. [37]

      LI Q, MENG A, JIA J, ZHANG Y. Investigation of heavy metal partitioning influenced by flue gas moisture and chlorine content during waste incineration[J]. J Environ Sci, 2010,22(5):760-768.  

    38. [38]

      JIAO F, ZHANG L, YAMADA N, SATO A, NINOMIYA Y. Effect of HCl, SO2 and H2O on the condensation of heavy metal vapors in flue gas cooling section[J]. Fuel Process Technol, 2013,105:181-187.

    39. [39]

      CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009,88(3):539-546.  

    40. [40]

      SEAMES W S, WENDT J O L. Regimes of association of arsenic and selenium during pulverized coal combustion[J]. Proc Combust Inst, 2007,31(2):2839-2846.  

    41. [41]

      LUO Y, GIAMMAR D E, HUHMANN B L, CATALANO J G. Speciation of selenium, arsenic, and zinc in class c fly ash[J]. Energy Fuels, 2011,25(7):2980-2987.  

    42. [42]

      YANG Y, HU H, XIE K, HUANG Y, LIU H, LI X, YAO H, NARUSE I. Insight of arsenic transformation behavior during high-arsenic coal combustion[J]. Proc Combust Inst, 2019,37(4):4443-4450.  

    43. [43]

      GONG H, HUANG Y, HU H, FU B, MA T, LI S, XIE K, LUO G, YAO H. Insight of particulate arsenic removal from coal-fired power plants[J]. Fuel, 2019257.  

    44. [44]

      SHEN F, LIU J, ZHANG Z, YANG Y. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed[J]. J Hazard Mater, 2016,310:40-47.  

    45. [45]

      SHAH P, STREZOV V, PRINCE K, NELSON P F. Speciation of As, Cr, Se and Hg under coal fired power station conditions[J]. Fuel, 2008,87(10/11):1859-1869.  

    46. [46]

      FU B, HOWER J C, DAI S, MARDON S M, LIU G. Determination of chemical speciation of arsenic and selenium in high-as coal combustion ash by X-ray photoelectron spectroscopy:Examples from a Kentucky stoker ash[J]. ACS Omega, 2018,3(12):17637-17645.  

    47. [47]

      MA T, HUANG Y, DENG S, FU B, LUO G, WANG J, HU H, YUAN C, YAO H. The relationship between selenium retention and fine particles removal during coal combustion[J]. Fuel, 2020265.  

    48. [48]

      HUANG Y, GONG H, HU H, FU B, YUAN B, LI S, LUO G, YAO H. Migration and emission behavior of arsenic and selenium in a circulating fluidized bed power plant burning arsenic/selenium-enriched coal[J]. Chemosphere, 2020127920.  

    49. [49]

      HUANG Y, HU H, GONG H, XING H, YUAN B, FU B, LI A, YAO H. Mechanism study of selenium retention by iron minerals during coal combustion[J]. Proc Combust Inst, 2020.  

    50. [50]

      MA Yin-juan. Thermodynamics simulation and experiment study of volatile trace elements in coal during combustion[D]. Jiaozuo: Institutes of Technology of Henan, 2011.

    51. [51]

      WANG Li. Study on the partitioning characteristics of Hg, As, Se and other hazardous elements in ultra low emission coal fired power plants[D]. Hangzhou: Zhejiang University, 2018.

    52. [52]

      SENIOR C, OTTEN B V, WENDT J O L, SAROFIM A. Modeling the behavior of selenium in Pulverized-Coal Combustion systems[J]. Combust Flame, 2010,157(11):2095-2105.  

    53. [53]

      GUO Xin. Experimental and mechanism study on the mercury, arsenic and selenium transformation and emission control during coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2005.

    54. [54]

      ZHAO S, DUAN Y, LI Y, LIU M, LU J, DING Y, GU X, TAO J, DU M. Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant[J]. Fuel, 2018,214:597-606.  

    55. [55]

      YI H, HAO J, DUAN L, TANG X, NING P, LI X. Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China[J]. Fuel, 2008,87(10/11):2050-2057.  

    56. [56]

      ZHOU C, LIU G, FANG T, WU D, LAM P K S. Partitioning and transformation behavior of toxic elements during circulated fluidized bed combustion of coal gangue[J]. Fuel, 2014,135:1-8.  

    57. [57]

      SANDELIN K, BACKMAN R. Trace elements in two pulverized coal-fired power stations[J]. Environ Sci Technol, 2001,35(5):826-834.  

    58. [58]

      NALBANDIAN H. Trace element emissions from coal[R]. 2012.

    59. [59]

      RATAFIA-BROWN J A. Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers[J]. Fuel Process Technol, 1994,39(1/3):139-157.  

    60. [60]

      CÓRDOBA P, OCHOA-GONZALEZ R, FONT O, IZQUIERDO M, QUEROL X, LEIVA C, LÓPEZ-ANTÓN M A, DÍAZ-SOMOANO M, ROSA MARTINEZ-TARAZONA M, FERNANDEZ C, TOMÁS A. Partitioning of trace inorganic elements in a coal-fired power plant equipped with a wet flue gas desulphurisation system[J]. Fuel, 2012,92(1):145-157.  

    61. [61]

      MEIJ R, TE WINKEL H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations[J]. Atmos Environ, 2007,41(40):9262-9272.  

    62. [62]

      DENG Shuang, ZHANG Fan, LIU Yu, SHI Ying-jie, WANG Hong-mei, ZHANG Chen, WANG Xiang-feng, CAO Qing. Lead emission and speciation of coal-6red power plants in China[J]. China Environ Sci, 2013,33:1199-1206.  

    63. [63]

      SUN Zhe. Transformation of arsenic, lead, cadmium and chromium in coal fire power plant[D]. North China Electric Power University, 2015.

    64. [64]

      BIN H, LIN Z, YANG Y, FEI L, CAI L, LINJUN Y. PM2.5 and SO3 collaborative removal in electrostatic precipitator[J]. Powder Technol, 2017,318:484-490.  

    65. [65]

      PAN Si-wei, ZHANG Kai, ZHANG Yu, LIU Xiao-wei. The Particulate matter and trace elements emission characteristics of large coal-fired units[J]. J Eng Thermal Energy Tower, 2016(31):84-89.  

    66. [66]

      FU B, LIU G, SUN M, HOWER J C, MIAN M M, WU D, WANG R, HU G. Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler[J]. Environ Pollut, 2018,242(Pt B):1950-1960.  

    67. [67]

      ZHAO Y, ZHANG J, HUANG W, WANG Z, LI Y, SONG D, ZHAO F, ZHENG C. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China[J]. Energy Convers Manage, 2008,49(4):615-624.  

    68. [68]

      TIAN C, GUPTA R, ZHAO Y, ZHANG J. Release behaviors of arsenic in fine particles generated from a typical high-arsenic coal at a high temperature[J]. Energy Fuels, 2016,30(8):6201-6209.  

    69. [69]

      MULHOLLAND J A, SAROFIM A F. Mechanisms of inorganic particle formation during suspension heating of simulated aqueous wastes[J]. Environ Sci Technol, 1991,25(2):268-274.  

    70. [70]

      ZHANG Xiao-feng, YAO Qiang, SONG Qiang, LI Shui-qing. Experimental study on the emission characteristics of lead during combustion[J]. Proceedings of the CSEE, 2007(32):18-23.  

    71. [71]

      YAO H, NARUSE I. Behavior of lead compounds during municipal solid waste incineration[J]. Proc Combust Inst, 2009,32(2):2685-2691.  

    72. [72]

      AKERS D, DOSPOY R. Role of coal cleaning in control of air toxics[J]. Fuel Process Technol, 1994,39(1/3):73-86.  

    73. [73]

      WANG F, QIN Y, SONG D Y. Cleaning potential of hazardous elements during coal washing[J]. J Fuel Chem Technol, 2003,31(4):295-299.  

    74. [74]

      FINKELMAN R B. Modes of occurrence of potentially hazardous elements in coal:Levels of confidence[J]. Fuel Process Technol, 1994,39(1/3):21-34.

    75. [75]

      ZHANG Zhen-fu, FAN Jin-chuan, JIN Ju-fang, YANG You-cun, SONG Li-jun, YANG Huang. Mode of occurrence of Pb, As, Be, Cr in coal[J]. J Fuel Chem Technol, 1992,20(2):206-212.  

    76. [76]

      WANG Ming-shi, ZHENG Bao-shan, FINKELMAN R B, HU Jun, WU Dai-she, LI She-hong. Relationship between occurrence mode of arsenic in coal and its washing rate[J]. J Fuel Chem Technol, 2005,33(2):253-256.  

    77. [77]

      ZHANG Bo. Cleaning potentiality analysis of harmful microelements in coal[J]. Clean Coal Technol, 2015,21(4):20-24.  

    78. [78]

      YU Qiu-mei. Investigation of environmental pollution of heavy metals during coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 1996.

    79. [79]

      LIU H, WANG C, ZHANG Y, HUANG X, GUO Y, WANG J. Experimental and modeling study on the volatilization of arsenic during co-combustion of high arsenic lignite blends[J]. Appl Therm Eng, 2016,108:1336-1343.  

    80. [80]

      JIAO F, NINOMIYA Y, ZHANG L, YAMADA N, SATO A, DONG Z. Effect of coal blending on the leaching characteristics of arsenic in fly ash from fluidized bed coal combustion[J]. Fuel Process Technol, 2013,106:769-775.  

    81. [81]

      ZHANG C, XU H, YAO H, TAN P, HU H Y, FANG Q Y, CHEN G. A method to control pollutant emission of coal power plant by mixed coal combustion: CN, 108459628A[P]. 2018-04-28.

    82. [82]

      GULLETT B K, RAGHUNATHAN K. Reduction of coal-based metal emissions by furnace sorbent injection[J]. Energy Fuels, 1994,8(5):1068-1076.  

    83. [83]

      ZHANG Jun-ying, REN De-yi, ZHONG Qin, XU Fu-ming, ZHANG Yang-guo. Restraining of arsenic volatility using lime in coal combustion[J]. J Fuel Chemi Technol, 2000,28(3):198-200.  

    84. [84]

      YAO H, NARUSE I. Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion[J]. Particuology, 2009,7(6):477-482.  

    85. [85]

      WOUTERLOOD H, BOWLING K. Removal and recovery of arsenious oxide from flue gases[J]. Environ Sci Technol, 1979,13(1).  

    86. [86]

      LÓPEZ-ANTÓN M A, DÍAZ-SOMOANO M, FIERRO J L G, MARTÍNEZ-TARAZONA M R. Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons[J]. Fuel Process Technol, 2007,88(8):799-805.

    87. [87]

      LÓPEZ-ANTÓN M A, DÍAZ-SOMOANO M, SPEARS D A, MARTÍNEZ-TARAZONA M R. Arsenic and selenium capture by fly ashes at low temperature[J]. Environ Sci Technol, 2006,40(12):3947-3951.  

    88. [88]

      LI S, GONG H, HU H, LIU H, HUANG Y, FU B, WANG L, YAO H. Re-using of coal-fired fly ash for arsenic vapors in-situ retention before SCR catalyst:Experiments and mechanisms[J]. Chemosphere, 2020,254126700.

    89. [89]

      WANG J, ZHANG Y, WANG T, XU H, PAN W-P. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem Eng J, 2020380.  

    90. [90]

      XU Hao, ZHANG Cheng, YUAN Chang-le, YU Sheng-hui, LI Quan, FANG Qing-yan, CHEN Gang. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere[J]. J Fuel Chem Technol, 2019,47(7):876-883.  

    91. [91]

      ZHANG Yue, WANG Chun-bo, LIU Hui-min, SUN Zhe, LI Weng-han, ZHANG Yong-sheng, PAN Wei-ping. Removal of gas-phase As2O3 in dry process by metal oxide adsorbents[J]. J Fuel Chem Technol, 2015,43(4):476-482.  

    92. [92]

      ZHANG Y, WANG C, LI W, LIU H, ZHANG Y, HACK P, PAN W. Removal of gas-phase As2O3 by metal oxide adsorbents:effects of experimental conditions and evaluation of adsorption mechanism[J]. Energy Fuels, 2015,29(10):6578-6585.  

    93. [93]

      CHEN D, HU H, XU Z, LIU H, CAO J, SHEN J, YAO H. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chem Eng J, 2015,267:201-206.

    94. [94]

      HU H, CHEN D, LIU H, YANG Y, CAI H, SHEN J, YAO H. Adsorption and reaction mechanism of arsenic vapors over gamma-Al2O3 in the simulated flue gas containing acid gases[J]. Chemosphere, 2017,180:186-191.  

    95. [95]

      HUANG Y, YANG Y, HU H, XU M, LIU H, LI X, WANG X, YAO H. A deep insight into arsenic adsorption over γ-Al2O3 in the presence of SO2/NO[J]. Proc Combust Inst, 2019,37(3):2951-2957.

    96. [96]

      XING H, LIU H, ZHANG X, HUANG Y, LI H, HUANG B, HU H, YAO H. In-furnace control of arsenic vapor emissions using kaolinite during low-rank coal combustion:influence of gaseous sodium compounds[J]. Environ Sci Technol, 2019,53(20):12113-12120.  

    97. [97]

      GHOSH-DASTIDAR A, MAHULI S, AGNIHOTRI R, FAN L S. Selenium capture using sorbent powders:Mechanism of sorption by hydrated lime[J]. Environ Sci Technol, 1996,30(2):447-452.  

    98. [98]

      LI Y, TONG H, ZHUO Y, WANG S J, XU S C. Simultaneous removal of SO2 and trace SeO2 from flue gas:Effect of SO2 on selenium capture and kinetics study[J]. Environ Sci Technol, 2006,40(24):7919-7924.

    99. [99]

      FAN Y, ZHUO Y, LOU Y, ZHU Z, LI L. SeO2 adsorption on CaO surface:DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017,413:366-371.  

    100. [100]

      SCOTTO M V, UBEROI M, PETERSON T W, SHADMAN F, WENDT J O L. Metal capture by sorbents in combustion processes[J]. Fuel Process Technol, 1994,39(1/3):357-372.  

    101. [101]

      YAO H, MKILAHA I S N, NARUSE I. Screening of sorbents and capture of lead and cadmium compounds during sewage sludge combustion[J]. Fuel, 2004,83(7/8):1001-1007.

    102. [102]

      WANG X, HUANG Y, PAN Z, WANG Y, LIU C. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations[J]. J Hazard Mater, 2015,295:43-54.

    103. [103]

      ZHAO S, DUAN Y, CHEN L, LI Y, YAO T, LIU S, LIU M, LU J. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 2. arsenic, chromium, barium, manganese, lead[J]. Environ Pollut, 2017,226:404-411.  

    104. [104]

      CHENG C M, HACK P, CHU P, CHANG Y N, LIN T Y, KO C S, CHIANG P H, HE C C, LAI Y M, PAN W P. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems[J]. Energy Fuels, 2009,23(10):4805-4816.

    105. [105]

      CHANG L, YANG J, ZHAO Y, LIU H, ZHANG J, ZHENG C. Behavior and fate of As, Se, and Cd in an ultra-low emission coal-fired power plant[J]. J Clean Prod, 2019,209:722-730.  

    106. [106]

      WANG J, ZHANG Y, LIU Z, GU Y, NORRIS P, XU H, PAN W-P. Coeffect of air pollution control devices on trace element emissions in an ultralow emission coal-fired power plant[J]. Energy Fuels, 2018,33(1):248-256.  

    107. [107]

      ZHAO S, DUAN Y, WANG C, LIU M, LU J, TAN H, WANG X, WU L. Migration behavior of trace elements at a coal-fired power plant with different boiler loads[J]. Energy Fuels, 2016,31(1):747-754.  

    108. [108]

      HUA W, SUN H T, QI J M, HUANG Z J, SHI Z P, DUAN L B. Emission characteristics of Pb and As from an ultra-low emission coal-fired power plant[J]. Therm Power Gener, 2019,48(10):65-70.  

    109. [109]

      MEIJ R, TE WINKEL H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations[J]. Atmos Environ, 2007,41(40):9262-9272.  

    110. [110]

      ZHANG Kai-hua, ZHANG Kai, PAN Wei-ping. Emission characteristics of arsenic and mercury from a 300 MW coal-fired power plant[J]. J Fuel Chem Technol, 2013,41(7):839-844.  

    111. [111]

      BREKKE D W, BOTROS P E, ERICKSON T A, MUDD M J. Comparison of hazardous air pollutants from advanced and conventional power systems[Z]. 12th Annual International Pittsburgh Coal Conference, Pittsburgh, Pennsylvania, 1995.

    112. [112]

      WANG Chun-bo, SHI Yan-hong, WU Hua-cheng, ZHANG Yue, KANG Xi. Research on collaborative control of heavy metals discharge from coal combustion by hybrid particulate collector and wet flue gas desulphurization[J]. J China Coal Soc, 2016,41(7):1833-1840.  

    113. [113]

      LI Bing, WANG Hong-liang, XU Yue-yang, XUE Jian-ming, GUAN Yi-ming. l.Reduction of trace elements in flue gas by wet desulphurization facilities in coal-fired power plants[J]. Journal of China Coal Society, 2015,40(10):2479-2483.

    114. [114]

      WANG C, LIU X, LI D, SI J, ZHAO B, XU M. Measurement of particulate matter and trace elements from a coal-fired power plant with electrostatic precipitators equipped the low temperature economizer[J]. Proc Combust Inst, 2015,35(3):2793-2800.  

    115. [115]

      JUAN A, GALLEGO-JUÁREZ , ENRIQUE RIERA-FRANCO DE SARABIA, GERMAN RODRÍGUEZ-CORRAL, THOMAS L. HOFFMANN, JUAN C. GÁLVEZ-MORALEDA, JESUS J. RODRÍGUEZ-MAROTO, FRANCISCO J. GÓMEZ-MORENO, ALBERTO BAHILLO-RUIZ, MANUEL MARTÍN-ESPIGARES, MIGUEL ACHA. Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants[J]. Environ Sci Technol, 1999,33(21):3843-3849.

    116. [116]

      ZHAO Shuang, LUO Zhong-yang, WANG Peng, XU Fei, CEN Ke-fa. Removal of fine particles of flue gas by electric agglomeration[J]. Energy Eng, 2006(3):38-40, 43.  

    117. [117]

      ZHAO Yong-chun, ZHANG Jun-ying, WEI Feng, CHEN Jun, ZHENG Chu-guan. Experimental study on agglomeration of submicron particles from coal combustion[J]. J Chem Ind Eng (China), 2007,58:2876-2881.  

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    5. [5]

      Zhongyun Wu Li Wang Xiaokui Wang Wanchun Zhu Yuan Chun Fuping Tian Yongmei Liu Yunshan Bai Hong Yuan Yufeng Li Shu'e Song Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Pressure. University Chemistry, 2025, 40(5): 137-147. doi: 10.12461/PKU.DXHX202503027

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Yidan Jing Xiaomin Zhang Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146

    11. [11]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    12. [12]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    13. [13]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    14. [14]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    15. [15]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    16. [16]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    17. [17]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    18. [18]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    19. [19]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    20. [20]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

Metrics
  • PDF Downloads(7)
  • Abstract views(1122)
  • HTML views(341)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return