Effect of compatibilizer on low-temperature performances of modified asphalts from direct coal liquefaction residue
- Corresponding author: JI Jie, jijie@bucea.edu.cn
Citation:
JI Jie, LI Hui, WANG Jia-ni, SUO Zhi, XU Ying. Effect of compatibilizer on low-temperature performances of modified asphalts from direct coal liquefaction residue[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(8): 925-933.
ELLIOT M A. Chemistry of Coal Utilization (Second Supplementary Volume)[M]. New York:John Wiley and Sons, Inc, 1981.
ZHENG L Z, WANG X H, ZHANG T S, ZHENG C H. Research progress in utilizations of coal liquefaction residues[C]//IEEE. 2011 International Conference on Materials for Renewable Energy and Environment. New York: IEEE. 2011: 1627-1630.
PATEL P. China and south africa pursue coal liquefaction[J]. MRS Bulletin, 2012,37(3):204-205. doi: 10.1557/mrs.2012.64
CN: 201010614927. (LAI Shi-liu, CHEN Xue-lian, SHENG Ying. An ionic liquid extractant used to separate asphaltenes, asphaltenes and heavy oils from direct coal liquefaction residue[P]. CN: 201010614927.
ADACHI Y, NAKAMIZ M. Chemical structure of pyridine soluble matter of coal liquefaction residue[J]. J Japan Inst Energy, 1993,72(10):930-934. doi: 10.3775/jie.72.930
SUGANO M, IKEMIZU R, MASHIMO K. Effects of the oxidation pretreatment with hydrogen peroxide on the hydrogenolysis reactivity of the coal liquefaction residue[J]. Fuel Process Technol, 2002,77/78(1):67-73.
RATHBONE R F, HOWER J C, DERBYSHIRE F J. The application of fluorescence microscopy to coal-derived characterization[J]. Fuel, 1993,72(8):1177-1185. doi: 10.1016/0016-2361(93)90328-Y
WANG Zhai-xia, YANG Jian-li, LIU Zhen-yu. Preliminary evaluation of direct coal liquefaction residue modification effect on road asphalt[J]. J Fuel Chem Technol, 2007,35(1):109-112. doi: 10.3969/j.issn.0253-2409.2007.01.021
JI J, ZHAO Y S, XU S F. Study on properties of the Blends with Direct Coal Liquefaction Residue and Asphalt[C]//Materials Science, Civil Engineering and Architecture Science, Mechanical Engineering and Manufacturing Technology, ICAEMAS 2014. Xi'an, China, 2014. USA: Trans Tech Publication Inc, 2014: 316-321.
JI Jie, SHI Yue-feng, SUO Zhi, XU Shi-fa, YANG Song, LI Peng-fei. Comparison on properties of modified asphalt blended with DCLR and TLA[J]. J Fuel Chem Technol, 2015,43(9):1061-1067. doi: 10.3969/j.issn.0253-2409.2015.09.006
JI J, YAO H, YANG X, XU Y, SUO Z, YOU Z P. Performance analysis of direct coal liquefaction residue (DCLR) and Trinidad lake asphalt (TLA) for the purpose of modifying tradition alasphalt[J]. Arabian J Sci Engineer, 2016,41(10):3983-3993. doi: 10.1007/s13369-016-2034-5
HE Liang. Research on preparation and properties of direct coal liquefaction residue modified asphalt[D]. Xi'an: Chang'an University, 2013.
SU Man-man, ZHANG Hong-liang, ZHANG Yong-ping, ZHANG Zeng-ping. Miscibility and mechniclanical properties of SBS and asphalt blends based on molecular dynamics simulation[J]. J Chang'an Univ (Nat Sci Ed), 2017,37(3):24-32. doi: 10.3969/j.issn.1671-8879.2017.03.004
LIU Ke-fei, DENG Lin-fei, ZHENG Jia-yu, JIANG Kang. Compatibility evaluation of waste tire rubber power modified asphalt binder[J]. New Build Mater, 2017,44(5):13-16. doi: 10.3969/j.issn.1001-702X.2017.05.004
LI Kuan, PAN Yong-qiang, ZHANG Hui, CHEN Li-feng, ZHANG Jian. Research progress of compatibility of epoxy asphalt for steel deck pvement[J]. Mater Rev, 2018,32(9):1534-1540.
CHEN Jing, SUN Ming, DAI Xiao-min, YAO Yi, LIU Yuan-yuan, HE Min, LÜ Bo, ZHAO Xiang-long, MA Xiao-xun. Asphalt modification with direct coal liquefaction residue based on benzaldehyde crosslinking agent[J]. J Fuel Chem Technol, 2015,43(9):1052-1060. doi: 10.3969/j.issn.0253-2409.2015.09.005
CHAO Wei-dong, LIU Shu-tang. Effect of silane coupling agent on properties of asphalt-rubber(AR)binders[J]. J Build Mater, 2009,12(4):497-500. doi: 10.3969/j.issn.1007-9629.2009.04.026
SU Da-gen, ZHANG Jing-feng, HE Juan. Study on the function of emulsified asphalt modified by silance coupling[J]. Guangzhou Chem Ind, 2006(3):32-34. doi: 10.3969/j.issn.1001-9677.2006.03.014
FAN Yun-zhu. Exploratory study on properties and application of coal direct liquefaction residue[D]. Shanghai: East China University of Science and Technology, 2011.
CHEN Song, PEI Xiao-guang, LIU Rong-bo. Evaluation method of low temperature performance of SBS modified asphalt[J]. Shandong Chem Ind, 2018,47(9):49-50+52. doi: 10.3969/j.issn.1008-021X.2018.09.020
COTTERELL B, REDDEL J K. The essential work of plane stress ductile fracture[J]. Inter J Fract, 1977,13(3):267-277.
ANDRIESCU A, HESP S, YOUTCHEFF J S. Essential and Plastic Works of Ductile Fracture in Asphalt Binders[M]. 2004.
ZHOU F, MOGAWER W, LI H, ANDRIESCU A, COPELAND A. Evaluation of fatigue tests for characterizing asphalt binders[J]. J Mater Civ Eng, 2013,25(5):610-617. doi: 10.1061/(ASCE)MT.1943-5533.0000625
TABATABAEE H, CLOPOTEL C, ARSHADI A. Critical problems with using the asphalt ductility test as a performance index for modified binders[J]. Transportation Research Record:Journal of the Transportation Research Board, 2013(2370):84-91.
PALIUKAITE M, ASSURAS M, SILVA S C, DING H, GOTAME Y, NIE Y, UBAID I, HESP S A M. Implementation of the double-edge-notched tension test for asphalt cement acceptance[J]. Trans Dev Eco, 2017,3(1)6. doi: 10.1007/s40890-017-0034-0
PALIUKAITE M, ASSURAS M, HESP S A M. Effect of recycled engine oil bottoms on the ductile failure properties ofstraight and polymer-modified asphalt cements[J]. Constr Build Mater, 2016,126:190-196. doi: 10.1016/j.conbuildmat.2016.08.156
SINGH D, GIRIMATH S. Influence of RAP sources and proportions on fracture and low temperature cracking performance of polymer modified binder[J]. Constr Build Mater, 2016,120:10-18. doi: 10.1016/j.conbuildmat.2016.05.094
AASHTO TP 113-15, Standard Method of Test for Determination of Asphalt Binder Resistance to Ductile Failure Using Double-Edge-Notched Tension (DENT) Test[S]. Washington, 2015.
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Yuanyuan JIANG , Fangfang TU , Yuhong ZHANG , Shi CHEN , Jiayuan XIANG , Xinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
Xiaoyan Wang , Chao Wang , Dongmei Dai , Yanling Geng , Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
Tongyu Zheng , Teng Li , Xiaoyu Han , Yupei Chai , Kexin Zhao , Quan Liu , Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
(a): 10 ℃ ductility; (b): 25 ℃ penetration; (c): softenig point
(a): benzaldehyde-direct coal liquefaction residue modified asphalt; (b): silane coupling agents-direct coal liquefaction residue modified asphalt; (c): xylene-direct coal liquefaction residue modified asphalt; (d): direct coal liquefaction residue modified asphalt
note: direct coal liquefaction residue modified asphalt with different kinds of compatibilizers in the figure is expressed as "the name of compatibilizer-DCLR", the same below
(a): direct coal liquefaction residue modified asphalt; (b): benzaldehyde-direct coal liquefaction residue modified asphalt; (c): xylene-direct coal liquefaction residue modified asphalt; (d): silane coupling agents-direct coal liquefaction residue modified asphalt