Citation: YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1296-1302. shu

Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal

  • Corresponding author: ZHANG Jun-ying, jyzhang@hust.edu.cn
  • Received Date: 31 May 2017
    Revised Date: 18 July 2017

    Fund Project: the National Natural Science Foundation of China 41672148the National Natural Science Foundation of China U1510201The project was supported by the National Natural Science Foundation of China(41672148, U1510201)

Figures(6)

  • During coal pyrolysis and gasification, the minerals in coal undergo various transformations, which affects coal conversion and characteristics of coal ash obviously. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in high-silica coal under different temperature was investigated. Composition of products obtained was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscope-energy dispersive spectrometer (FESEM-EDS) technology. The results show that Fe2O3 plays a positive role in carbothermal reaction of silicon-bearing minerals, which could effectively improve activity of Si. On the contrary, CaO reacts with Al2O3 and SiO2 to form dense Ca-Al-Si eutectic, mainly CaAl2Si2O8, at lower temperature, covering surface of the reactant, which hinders the carbothermal reaction of silicon-containing minerals. With increasing temperature, CaAl2Si2O8 reacts with graphite to generate SiC, CaAl4O7 and CaSiO3. The related thermodynamic calculations are in accordance with the experiment results.
  • 加载中
    1. [1]

      BAI J, LI W, LI C, BAI Z, LI B. Influences of minerals transformation on the reactivity of high temperature char gasification[J]. Fuel Process Technol, 2010,91(4SI):404-409.  

    2. [2]

      BAI Jin, LI Wen, LI Bao-qing. Mineral behavior in coal under reducing atmosphere at high temperature[J]. J Fuel Chem Technol, 2006,34(3):292-297.  

    3. [3]

      BAI Jin, LI Wen, BAI Zong-qing, LI Bao-qing. Influences of mineral matter on high temperature gasification of coal char[J]. J Fuel Chem Technol, 2009,37(2):134-138.  

    4. [4]

      BAI Jin, LI Wen, BAI Zong-qing, LI Bao-qing. Transformation of mineral matters in Yanzhou coal ash at high temperature[J]. J China U Min Technol, 2008(3):369-372.  

    5. [5]

      MA Z, BAI J, WEN X, LI X, SHI Y, BAI Z, KONG L, GUO Z, YAN J, LI W. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures Part 3:Carbon thermal reaction[J]. Energy Fuels, 2014,28(5):3066-3073. doi: 10.1021/ef5004792

    6. [6]

      MA Z, BAI J, LI W, BAI Z, KONG L. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, Part 1:Mineral transformation in char[J]. Energy Fuels, 2013,27(8):4545-4554. doi: 10.1021/ef4010626

    7. [7]

      MA Z, BAI J, BAI Z, KONG L, GUO Z, YAN J, LI W. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, Part 2:char gasification[J]. Energy Fuels, 2014,28(3):1846-1853. doi: 10.1021/ef402382m

    8. [8]

      WANG J, ISHIDA R, TAKARADA T. Carbothermal reactions of quartz and kaolinite with coal char[J]. Energy Fuel, 2000,14(5):1108-1114. doi: 10.1021/ef000084x

    9. [9]

      LI G, LIU Q, LIU Z. CaC2 Production from Pulverized Coke and CaO at Low Temperatures-Influence of Minerals in Coal-Derived Coke[J]. Ind Eng Chem Res, 2012,51(33):10748-10754. doi: 10.1021/ie3006726

    10. [10]

      WANG J, MORISHITA K, TAKARADA T. High-temperature interactions between coal char and mixtures of calcium oxide, quartz and kaolinite[J]. Energy Fuels, 2001,15(5):1145-1152. doi: 10.1021/ef0100092

    11. [11]

      WU S, ZHANG X, GU J, WU Y, GAO J. Interactions between carbon and metal oxides and their effects on the Carbon/CO2 reactivity at high temperatures[J]. Energy Fuels, 2007,21(4):1827-1831. doi: 10.1021/ef0605551

    12. [12]

      ZHANG Ming-liang. Influence of the SiC generation on the submerged arc furnace smelting process[D]. Baotou:Inner Mongolia University of Science and Technology, 2007. 

    13. [13]

      WU X, ZHANG Z, CHEN Y, ZHOU T, FAN J, PIAO G, KOBAYASHI N, MORI S, ITAYA Y. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Process Technol, 2010,91(11):1591-1600. doi: 10.1016/j.fuproc.2010.06.007

    14. [14]

      MA Zhi-bin, BAI Zong-qing, BAI Jin, LI Wen, GUO Zhen-xing. Evolution of coal ash with high Si/Al ratio under reducing atmosphere at high temperature[J]. J Fuel Chem Technol, 2012,40(3):279-285.  

    15. [15]

      WU Jun. The study on the characteristics of minerals in high silicon coal and the ash melting characteristics[D].Wuhan:Huazhong University of Science and Technology, 2012.

    16. [16]

      YAN T, BAI J, KONG L, BAI Z, LI W, XU J. Effect of SiO2/Al2O3 on fusion behavior of coal ash at high temperature[J]. Fuel, 2017,193:275-283. doi: 10.1016/j.fuel.2016.12.073

    17. [17]

      YIN Y, MA B, LI S, ZHANG B, YU J, ZHANG Z, LI G. Synthesis of Al2O3-SiC composite powders from coal ash in NaCl-KCl molten salts medium[J]. Ceram Int, 2016,42(16):19225-19230. doi: 10.1016/j.ceramint.2016.09.087

    18. [18]

      SUN Jun-min. A study of the mineral composition of coal combustion residues[J]. Acta Mineralogica Sini, 2001(1):14-18.  

    19. [19]

      WANG Yang, LI Hui, WANG Dong-xu, DONG Zhang-qing, LU Qiang, LI Wen-yan. Relationship betweencoal ash fusibility and ash composition in terms of mineral changes[J]. J Fuel Chem Technol, 2016,44(9):1034-1042.  

    20. [20]

      WU Xian-xi. Activity calculation of each component in Al-Si-Fe ternary system[J]. Chin J Nonferrous Met, 1999(3):627-630.  

    21. [21]

      YE Da-lun, HU Jian-hua. Handbook of Thermodynamic Data of Inorganic[M]. 2nd ed. Beijing:Metallurgical Industry Press, 1981.

    22. [22]

      LI Da-zhen. The Basis of Chemical Thermodynamics[M]. Beijing:Beijing Normal University Pubulishing Group, 1982.

    23. [23]

      LI Zi-yong, WU Chun-han, YU Qing-chun, LU Yong, YANG Bin, KE Wei-guo, SHEN Ran. Phase transformation of carbothermal reduction coal fly ash[J]. J China Coal Soc, 2016,41(3):769-775.  

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    4. [4]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    8. [8]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    12. [12]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    13. [13]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    14. [14]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    15. [15]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    18. [18]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    19. [19]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(0)
  • Abstract views(1568)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return