Citation: MA Teng-kun, FANG Jing-rui, SUN Yong, WANG Lan. Study on the modification effect of TiO2 support on the low temperature denitration activity of Mn-Ce/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(4): 491-496. shu

Study on the modification effect of TiO2 support on the low temperature denitration activity of Mn-Ce/TiO2 catalysts

  • Corresponding author: WANG Lan, wanglan@cbmamail.com.cn
  • Received Date: 15 June 2016
    Revised Date: 15 February 2017

    Fund Project: the National Science and Technology Support Program 2013BAC13B01

Figures(5)

  • Low-temperature selective catalytic reduction (SCR) catalysts were prepared by step wise blending method with TiO2, TiO2-Al2O3 and TiO2-SiO2 as support and Mn as active component, Ce as promoter. The effects of doping Al2O3 and SiO2 to TiO2 support on NOx removal activity of the catalysts were systematically investigated. The catalysts were characterized by XRD, BET surface area, SEM, H2-TPR and NH3-TPD. It was found that the specific surface area, pore structure parameters and surface pore structure morphology of the catalysts were improved and the TiO2 crystallinity of Mn-Ce/TiO2-Al2O3 and Mn-Ce/TiO2-SiO2 catalysts were reduced to some extent by doping SiO2, Al2O3 on TiO2 support respectively. The low temperature reduction peak area, acid type and acidity of catalysts surface were improved significantlybydoping modification. All of these were beneficial to enhance the denitration activity of the catalysts. The denitration activity of the catalysts was increased to a great extent by doping SiO2 and Al2O3 on TiO2 support respectively, the order of SCR activity of three kinds of catalysts above was:Mn-Ce/TiO2-SiO2 > Mn-Ce/TiO2-Al2O3 > Mn-Ce/TiO2 when the SCR reaction temperature was in the range of 80-140℃.
  • 加载中
    1. [1]

      People's Republic of China Environmental Protection Department[M]. 2012 China Environment Bulletin[M]. Beijing:2013, 32.

    2. [2]

      HAN Zhong-qi. The new stage of cement industry development in China[J]. China Cement, 2012(12):20-23.  

    3. [3]

      KIJLSTRA W S, BRANDS D S, POELS E K, BLIEK A. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3[J]. J Catal, 2007,171(1):208-218.

    4. [4]

      LI Feng. Study of SCR catalyst for coal-fired flue gas denitrification grafted on nanometer titania[D]. Nanjing:Southeast University, 2006.

    5. [5]

      NAKAJIMA F, HAMADA I. The state of the art technology of NOx control[J]. Catal Today, 1996,29(1/4):109-115.  

    6. [6]

      SHEN Y, ZHU S M, QIU T, SHEN S B. A novel catalyst of CeO2/Al2O3 for selective catalytic reduction of NO by NH3[J]. Catal Commun, 2009,11(1):20-23. doi: 10.1016/j.catcom.2009.08.001

    7. [7]

      CAPTAIN D K, ROBERTS K L, AMIRIDIS M D. The selective catalytic reduction of nitric oxide by propylene over Pt/SiO2[J]. Catal Today, 1998,42(1/2):93-100.  

    8. [8]

      NANBA T, WADA K I, MASUKAWA S, UCHISAWA J, OBUCHI A. Enhancement of activity of Ir catalysts for selective catalytic reduction of NO with CO by physical mixing with SiO2[J]. Appl Catal A:Gen, 2010,380(1/2):66-71.  

    9. [9]

      SALKER A V, WEISWEILER W. Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions[J]. Appl Catal A:Gen, 2000,203(2):221-229. doi: 10.1016/S0926-860X(00)00489-0

    10. [10]

      ZHEN Kai-ji. Catalyst Basis[M]. Beijing:The Science Publishing Company, 2005.

    11. [11]

      LI J H, CHEN J J, KE R. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts[J]. Catal Commun, 2007,8(12):1896-1900. doi: 10.1016/j.catcom.2007.03.007

    12. [12]

      ZHANG X, JI L, ZHANG S H, YANG W S. Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor[J]. J Power Sources, 2007,173(2):1017-1023. doi: 10.1016/j.jpowsour.2007.08.083

    13. [13]

      MISHRA T, MOHAPARRA P, PARIDD K M. Synthesis characterisation and catalytic evaluation of iron-manganese mixed oxide pillared clay for VOC decomposition reaction[J]. J Phys Chem, 1992,96(21):8441-8444. doi: 10.1021/j100200a043

    14. [14]

      MHAMDI M, KHADDAR Z S, GHOROEL A. Influence of the cobalt salt precursors on the cobalt speciation and catalytic properties of H-ZSM-5 modified with cobalt by solid-state ion exchange reaction[J]. Appl Catal A:Gen, 2009,357(1):42-50. doi: 10.1016/j.apcata.2008.12.036

    15. [15]

      CHMIELARZ L, GILKNAP B, ZBROJA M, GILKNAP B, DATKA J, DZIEMBAJ R. SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co:Part Ⅱ. Temperature programmed studies[J]. Appl Catal B:Environ, 2004,53(1):47-61. doi: 10.1016/j.apcatb.2004.04.019

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    7. [7]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    10. [10]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    11. [11]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    12. [12]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    13. [13]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    14. [14]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    15. [15]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    17. [17]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    18. [18]

      Xinlin ZhangCheng TangHaitao LiJie SunAijun DuMinghong WuHaijiao Zhang . Robust assembly of TiO2 quantum dots onto Ti3C2Tx for excellent lithium storage capability. Chinese Chemical Letters, 2025, 36(6): 110088-. doi: 10.1016/j.cclet.2024.110088

    19. [19]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    20. [20]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

Metrics
  • PDF Downloads(0)
  • Abstract views(1647)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return