Citation: Li Haoqiang, Fan Maosong, He Pengchen, Wang Hao, Liu Jingbing. Progress in Recycling and Utilization of Retired Ternary Power Batteries[J]. Chemistry, ;2020, 83(3): 226-231. shu

Progress in Recycling and Utilization of Retired Ternary Power Batteries

  • Corresponding author: Liu Jingbing, liujingbing@bjut.edu.cn
  • Received Date: 12 September 2019
    Accepted Date: 26 December 2019

Figures(2)

  • The retired ternary power battery contains a large amount of high-value metal elements such as cobalt, lithium, nickel and manganese. Recycling retired ternary power battery from electric vehicles can alleviate the recovery and environmental pollution pressure caused by retired batteries, and effectively improve resource utilization and economic benefits. This paper expounds the status quo of domestic and foreign technology research, especially focusing on the hydrometallurgy, including pretreatment and secondary treatment techniques such leaching, chemical precipitation, and solvent. Compared with pyrometallurgy, the advantages and disadvantages of the methods are introduced in detail. It is expected that this research could provide a guideline for improving retired ternary power battery recycling, and this topic can further promote the realization of industrialization.
  • 加载中
    1. [1]

      Zheng S, Huang J. Proceedings of the Fifth International Forum on Decision Sciences, Singapore:Springer, 2018:295~306.

    2. [2]

       

    3. [3]

    4. [4]

       

    5. [5]

    6. [6]

       

    7. [7]

      Zeng X L, Li J H, Liu L L. Renew. Sustain. Energy Rev., 2015, 52:1759~1767. 

    8. [8]

      Zeng X L, Li J H, Singh N. Crit. Rev. Environ. Sci. Technol., 2014, 44(10):1129~1165. 

    9. [9]

      Leila A, Young S B, Michiel F, et al. Int. J. Life Cycle Ass., 2017, 22(1):111~124.

    10. [10]

      Ordoñez J, Gago E J, Girard A. Renew. Sustain. Energy Rev., 2016, 60:195~205. 

    11. [11]

      J Li, G Wang, Z Xu. Waste Manage., 2016, 52:221~227. 

    12. [12]

      Wang X, Gaustad G, Babbitt C W. Waste Manage., 2016, 51:204~213. 

    13. [13]

      Kosaraju S. Sweden: Department of Chemical and Biological Engineering Chalmers University of Technology. 2012.http://publications.lib.chalmers.se/records/fulltext/163605.pdf.

    14. [14]

      Diekmann J, Hanisch C, Froböse L, et al. J. Electrochem. Soc., 2017, 164(1):6184~6191. 

    15. [15]

      Huang K, Li J, Xu Z. Waste Manage., 2011, 31(6):1292~1299. 

    16. [16]

      Yang Y, Zhao C. ACS Sustain. Chem. Eng., 2017, 5(11):1~10.

    17. [17]

      Nogueira C A, Margarido F. Energy Technology 2012:Carbon Dioxide Management and other Technologies, 2012:701~703.

    18. [18]

      Sun L, Qiu K. J. Hazard. Mater., 2011, 194(11):378~384. 

    19. [19]

      Shin S M, Kim N H, Sohn J S. Hydrometallurgy, 2005, 79(3):172~181. 

    20. [20]

      Granata G, Pagnanelli F, Moscardini E. J. Power Sources, 2012, 212:205~211. 

    21. [21]

      He L P, Sun S, Mu Y Y. ACS Sustain. Chem. Eng., 2016, 5(1):1~10. 

    22. [22]

      Song D, Wang X, Nie H. J. Power Sources. 2014, 249:137~141. 

    23. [23]

      Zheng R J, Wang W H, Dai Y K. Green Energy Environ., 2017, 2(1):42~50. 

    24. [24]

      Li L, Bian Y F, Zhang X X, et al. J. Power Sources, 2018, 377:70~79. 

    25. [25]

      Ferreira D A, Prados L M Z, Majuste D. J. Power Sources, 2009, 187(1):238~246. 

    26. [26]

      Wang J, Chen M, Chen H. Proced. Environ. Sci., 2012, 16:443~450. 

    27. [27]

      Li L, Lu J, Ren Y. J. Power Sources, 2012, 218(12):21~27. 

    28. [28]

      Gao W, Zhang X, Zheng X. Environ. Sci. Technol., 2017, 51(3):1662~1669. 

    29. [29]

      Li L, Dunn J B, Zhang X X. J. Power Sources, 2013, 233:180~189. 

    30. [30]

      Zeng X L, Li J H, Shen B Y. J. Hazard. Mater., 2015, 295:112~118. 

    31. [31]

      Nayaka G P, Pai K V, Santhosh G. Hydrometallurgy, 2016, 161:54~57. 

    32. [32]

      Zheng X H, Gao W F, Zhang X H. Waste Manage., 2017, 60:680~688. 

    33. [33]

      Ku H, Jung Y, Jo M. J. Hazard. Mater., 2016, 313:138~146. 

    34. [34]

      Nazanin B H, Mousavi S M. Waste Manage., 2017, 60:666~679. 

    35. [35]

      Horeh N B, Mousavi S M. J. Power Sources, 2016, 320:257~266. 

    36. [36]

      Xin B P, Zhang D, Zhang X. Bioresource Technol., 2009, 100(24):6163~6169. 

    37. [37]

      Zeng G, Luo S, Deng X, et al. Miner. Eng., 2013, 49(8):40~44.

    38. [38]

      Zeng G S, Deng X R, Luo S L. J. Hazard. Mater., 2012, 199(2):164~169. 

    39. [39]

      Chen S Y, Lin J. J. Hazard. Mater., 2009, 161(2):893~899. 

    40. [40]

      Pegoretti V C B, Dixini P V M, Smecellato P C, et al. Mater. Res. Bull., 2017, 86:5~9. 

    41. [41]

      Nayaka G P, Manjanna J, Pai K V. Hydrometallurgy, 2015, 151:73~77. 

    42. [42]

      Wang F, Sun R, Xu J. RSC Adv., 2016, 6(88):85303~85311. 

    43. [43]

      Pinna E G, Ruiz M C, Ojeda M W. Hydrometallurgy, 2017, 167:66~71. 

    44. [44]

      Guo X Y, Cao X, Huang G Y. Environ. Manage., 2017, 198:84~89. 

    45. [45]

      Joo S H, Dong J S, Oh C H. Hydrometallurgy, 2016, 159:65~74. 

    46. [46]

      Chen X P, Chen Y B, Zhou T. Waste Manage., 2015, 38(1):349~356. 

    47. [47]

      Jha A K, Jha M K, Kumari A. Sep. Purif. Technol., 2013, 104(5):160~166. 

    48. [48]

      Freitas M B J G, Garcia E M. J. Power Sources, 2007, 171(2):953~959. 

    49. [49]

      Santos V E O, Celante V G, Lelis M F F. J. Power Sources, 2012, 218(12):435~444. 

    50. [50]

      Souza R, Queiroz C, Brant J, et al. Miner. Eng., 2019, 130:156~164. 

    51. [51]

      Xiao S W, Ren G X, Xie M Q, et al. Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3 slag system//Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer, Cham, 2016: 211~218.

  • 加载中
    1. [1]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    2. [2]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    3. [3]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    5. [5]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    8. [8]

      Yidan Jing Xiaomin Zhang Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    11. [11]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    12. [12]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    13. [13]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    14. [14]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    16. [16]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    17. [17]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    18. [18]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    19. [19]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(43)
  • Abstract views(3547)
  • HTML views(908)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return