Citation: Chen Wei, Chen Mingyue, Sun Zhe. Research Progress in Biomass Surfactants[J]. Chemistry, ;2019, 82(8): 725-730. shu

Research Progress in Biomass Surfactants

  • Corresponding author: Sun Zhe, 759389895@qq.com
  • Received Date: 13 April 2019
    Accepted Date: 21 May 2019

Figures(7)

  • Biomass surfactants have become the best alternative to petroleum-based surfactants due to their wide source of raw materials, renewable, non-polluting and other advantages. Biomass surfactants are mainly prepared by natural lipids, carbohydrates, proteins and biomass phenols. Because of their special amphiphilic structure, they have good properties such as dispersity, emulsification, thickening, flocculation and unique physiological property. So they have great application advantages in food, medical, daily chemicals and other industries. Based on the development direction of surfactants, this paper reviews the research progress of preparation of surfactants based on biomass, and prospects the development direction of biomass surfactants.
  • 加载中
    1. [1]

      P A Gilbert, R Pettigrew. Int. J. Cosmetic Sci., 2010, 6(4):149~158. 

    2. [2]

      J H Unás, D de Alexandria Santos, E B Azevedo et al. Biocatal. Agric. Biotechnol., 2018, 13:160~167. 

    3. [3]

      C Liu, Y You, R Zhao et al. Ecotoxicol. Environ. Safety, 2017, 145:8~15. 

    4. [4]

       

    5. [5]

      Y Jin, S Tian, J Guo et al. J. Surfact. Deterg., 2016, 19(3):467~475. 

    6. [6]

       

    7. [7]

      R L Permadani, M Ibadurrohman. Utilization of waste cooking oil as raw material for synthesis of Methyl Ester Sulfonates (MES) surfactant. IOP Conference Series:Earth and Environmental Science. IOP Publishing, 2018, 105(1):012036.

    8. [8]

       

    9. [9]

    10. [10]

       

    11. [11]

       

    12. [12]

       

    13. [13]

      H Liang, D Chen, S Hu. J. Forest. Eng., 2018, 3(6):75~81.

    14. [14]

      H Lin, M Yang, J Li et al. J. Surfact. Deterg., 2017, 20(1):1~8. 

    15. [15]

      K A Wilk, U Laska, K Zielińska et al. J. Photochem. Photobiol. A, 2011, 219(2):204~210. 

    16. [16]

      L K Shrestha, T Sato, M Dulle et al. J. Phys. Chem. B, 2010, 114(37):12008~12017. 

    17. [17]

       

    18. [18]

       

    19. [19]

      H Razafindralambo, A Richel. Phys. Chem. Chem. Phys., 2011, 13:15291~15298. 

    20. [20]

    21. [21]

      S Bachan, K A Tony, A Kawamura et al. Bioorg. Med. Chem. Lett., 2013, 21:6554~6564. 

    22. [22]

      D An, X Zhao, Z Ye. Carbohyd. Res., 2015, 414:32~38. 

    23. [23]

       

    24. [24]

    25. [25]

    26. [26]

      H Zhang, Y Xiao, S Cui et al. J. Nanosci. Nanotechnol., 2015, 15(6):4058. 

    27. [27]

    28. [28]

      J O Metager, M Eissen. Green Chem., 2004, 7(1~3):583~592.

    29. [29]

      N Kango. Textbook of microbiology. New Delhi:IK International Pvt Ltd, 2010.

    30. [30]

      M Bougueroua, R Mousli, A Tazerouti. J. Surfact. Deterg., 2016, 19(6):1121~1131. 

    31. [31]

      Y Q Liang, Z Hu, D Cao. J. Surfact. Deterg., 2014, 17(4):693~701. 

    32. [32]

    33. [33]

      A Fawzy, M Abdallah, I A Zaafarany et al. J. Mol. Liquid, 2018, 265:276~291. 

    34. [34]

       

    35. [35]

       

    36. [36]

      Z G Liu, X Lu, L Z An et al. BioResources, 2016, 11(3):6438~6451.

    37. [37]

      M S Zhou, W L Wang, D J Yang et al. RSC Adv., 2015, 5(4):2441~2448. 

    38. [38]

      W He, P Fatehi. RSC Adv., 2015, 5(58):47031~47039. 

    39. [39]

      Y Qin, D Yang, W Guo et al. J. Ind. Eng. Chem., 2015, 27:192~200. 

    40. [40]

      M Konduri, P Fatehi. Colloid. Surf. A, 2018, 538:639~650. 

    41. [41]

       

    42. [42]

      P Peungjitton, P Sangvanich, S Pornpakakul et al. J. Surfact. Deterg., 2009, 12(2):85~89. 

    43. [43]

       

    44. [44]

      D A Hudson, S A Dannon, C Thorpe. Free Radical Bio. Med., 2015, 80:171~182. 

    45. [45]

       

    46. [46]

       

    47. [47]

      M J Ali, F Paulsen. Med. Hypotheses, 2019, 124:35~36. 

    48. [48]

       

    49. [49]

       

    50. [50]

      S Lyu, X Chen, S M Shah et al. Fuel, 2019, 239:1~12. 

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    4. [4]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    5. [5]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    6. [6]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    7. [7]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    8. [8]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    9. [9]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    10. [10]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    11. [11]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    12. [12]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    13. [13]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    14. [14]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    20. [20]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

Metrics
  • PDF Downloads(10)
  • Abstract views(1329)
  • HTML views(283)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return