Citation: Hongwei Lv, Min Chen, Huang Zhou, Yuen Wu. Progress in Ultra-Stable Single-Atom Catalysts with Sintering Resistance[J]. Chemistry, ;2021, 84(1): 2-9, 30. shu

Progress in Ultra-Stable Single-Atom Catalysts with Sintering Resistance

  • Corresponding author: Yuen Wu, yuenwu@ustc.edu.cn
  • Received Date: 24 August 2020
    Accepted Date: 25 September 2020

Figures(6)

  • Traditional supported metal catalysts are prone to sintering under high temperature environments or after long hours of work. This irreversible process will result in a significant reduction of the active sites of the catalysts, which will cause the catalysts to be severely deactivated. Therefore, it is often necessary to update the catalysts in time to meet the needs of industrial production, but this will greatly increase production costs. Unlike traditional supported metal catalysts, the central metal atom of single-atom catalysts (SACs) can form strong bonds with heteroatoms (N, O, S, etc.), thereby effectively inhibiting metal sintering. Based on the characteristics of single-atom catalysts, we can prepare ultra-stable single-atom catalysts that are resistant to sintering and high temperature to deal with special industrial catalytic environments. This paper summarizes the progress in the synthesis and application of anti-sintering ultra-stable single-atom catalysts in recent years, and provides references for the research in the field of single-atom catalysis.
  • 加载中
    1. [1]

      Noyori R. Nat. Chem., 2009, 1(1): 5~6. 

    2. [2]

      Xu Z, Xiao F S, Purnell S K, et al. Nature, 1994, (372): 346~348.

    3. [3]

      Dai Y, Lu P, Cao Z, et al. Chem. Soc. Rev., 2018, 47(12): 4314~4331. 

    4. [4]

      Qiao B, Wang A, Yang X, et al. Nat. Chem., 2011, 3(8): 634~641. 

    5. [5]

      Jiang R, Li L, Sheng T, et al. J. Am. Chem. Soc., 2018, 140(37): 11594~11598. 

    6. [6]

      Chen F, Jiang X, Zhang L, et al. Chin. J. Catal., 2018, 39(5): 893~898. 

    7. [7]

      Zhuang Z, Kang Q, Wang D, et al. Nano Res., 2020, 13(7): 1856~1866. 

    8. [8]

      Zhang J, Zheng C, Zhang M, et al. Nano Res., 2020, 13(11): 3082~3087. 

    9. [9]

      Yang X, Wang A, Qiao B, et al. Acc. Chem. Res., 2013, 46(8): 1740~1748. 

    10. [10]

      Vajda S, White M G. ACS Catal., 2015, 5(12): 7152~7176. 

    11. [11]

      Boronat M, Leyva-Pérez A, Corma A. Acc. Chem. Res., 2014, 47(3): 834~844. 

    12. [12]

      Corma A, Concepcion P, Boronat M, et al. Nat. Chem., 2013, 5(9): 775~781. 

    13. [13]

      Zhang X, Sun Z, Wang B, et al. J. Am. Chem. Soc., 2018, 140(3): 954~962. 

    14. [14]

      Zhu C, Fu S, Shi Q, et al. Angew. Chem. Int. Ed., 2017, 56(45): 13944~13960. 

    15. [15]

      Liu L, Corma A. Chem. Rev., 2018, 118(10): 4981~5079. 

    16. [16]

      Yao Y, Huang Z, Xie P, et al. Nat. Nanotechnol., 2019, 14(9): 851~857. 

    17. [17]

      Sun T, Xu L, Wang D, et al. Nano Res., 2019, 12(9): 2067~2080. 

    18. [18]

      Li X, Rong H, Zhang J, et al. Nano Res., 2020, 13(7): 1842~1855. 

    19. [19]

      Zhang H, Wei J, Dong J, et al. Angew. Chem. Int. Ed., 2016, 55(46): 14310~14314. 

    20. [20]

      Yin P, Yao T, Wu Y, et al. Angew. Chem. Int. Ed., 2016, 55(36): 10800~10805. 

    21. [21]

      Wang X, Chen Z, Zhao X, et al. Angew. Chem. Int. Ed., 2018, 57(7): 1944~1948. 

    22. [22]

      Wang J, Huang Z, Liu W, et al. J. Am. Chem. Soc., 2017, 139(48): 17281~17284. 

    23. [23]

      Zhao Y, Zhou H, Chen W, et al. J. Am. Chem. Soc., 2019, 141(27): 10590~10594. 

    24. [24]

      Jones J, Xiong H, De La Riva A T, et al. Science, 2016, 353(6295): 150~154. 

    25. [25]

      Qu Y, Li Z, Chen W, et al. Nat. Catal., 2018, 1(10): 781~786. 

    26. [26]

      Yang Z, Chen B, Chen W, et al. Nat. Commun., 2019, 10(1): 3734. 

    27. [27]

      Zhao C, Wang Y, Li Z, et al. Joule, 2019, 3(2): 584~594. 

    28. [28]

      Yang Z, Zhao C, Qu Y, et al. Adv. Mater., 2019, 31(12): 1808043. 

    29. [29]

      Wei S, Li A, Liu J C, et al. Nat. Nanotechnol., 2018, 13(9): 856~861. 

    30. [30]

      Zhou H, Liu T, Zhao X, et al. Angew. Chem. Int. Ed., 2019, 58(51): 18388~18393. 

    31. [31]

      Zhou H, Zhao Y, Xu J, et al. Nat. Commun., 2020, 11(1): 335. 

    32. [32]

      Zhang B W, Sheng T, Liu Y D, et al. Nat Commun, 2018, 9(1): 4082. 

    33. [33]

      Zhou H, Zhao Y, Gan J, et al. J. Am. Chem. Soc., 2020, 142(29): 12643~12650. 

    34. [34]

      Zhang N, Ye C, Yan H, et al. Nano Res., 2020, DOI: 10.1007/s12274-020-2994-3.

    35. [35]

      Herrerías C, Yao X, Li Z, et al. Chem. Rev., 2007, 107(6): 2546~2562. 

    36. [36]

      Cui X, Li H, Wang Y, et al. Chem, 2018, 4(8): 1902~1910. 

    37. [37]

      Huang W, McCormick J, Lobo R, et al. J. Catal., 2007, 246(1): 40~51. 

    38. [38]

      Liu Y, Liu X, Feng Q, et al. Adv. Mater., 2016, 28(23): 4747~4754. 

    39. [39]

      Dai X, Chen Z, Yao T, et al. Chem. Commun., 2017, 53(84): 11568~11571. 

    40. [40]

      Wang X, Chen W, Zhang L, et al. J. Am. Chem. Soc., 2017, 139(28): 9419~9422. 

    41. [41]

      Zhao C, Xiong C, Liu X, et al. Chem. Commun., 2019, 55(16): 2285~2288. 

    42. [42]

      Chen M, Zhou H, Liu X, et al. Small, 2020, 16(31): 2002343. 

    43. [43]

      Han Y, Wang Y G, Chen W, et al. J. Am. Chem. Soc., 2017, 139(48): 17269~17272. 

    44. [44]

      Yang Z, Wang Y, Zhu M, et al. ACS Catal., 2019, 9(3): 2158~2163. 

  • 加载中
    1. [1]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    2. [2]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    3. [3]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    4. [4]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    5. [5]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    9. [9]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    18. [18]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(64)
  • Abstract views(1723)
  • HTML views(586)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return