Citation: Hou Junjun, Li Lianshan, Huang Jin, Tang Zhiyong. Progress in the Syntheses of Covalent Organic Frameworks and Their Applications in Separation[J]. Chemistry, ;2019, 82(3): 195-201. shu

Progress in the Syntheses of Covalent Organic Frameworks and Their Applications in Separation

Figures(3)

  • Covalent organic frameworks (COFs) are crystalline porous polymers formed by covalent bonding of small organic molecules. Unlike typical linear polymers, COFs offer fine control over their skeletons in two and three dimensions, which enables the synthesis of rigid porous structures with high regularity and tunable chemical and physical properties. The nanoscale channels and voids in COFs provide an ideal environment for molecular storage, release and separation, endowing them great potential in energy adsorption, separation, and catalysis. This article reviews the progress in COFs, including the synthesis strategies, the applications in separation field as well as outlook of their future developments.
  • 加载中
    1. [1]

      X Feng, X Ding, D Jiang. Chem. Soc. Rev., 2012, 41 (18):6010~6022. 

    2. [2]

      N Huang, P Wang, D Jiang. Nat. Rev. Mater., 2016, 1 (10):16068. 

    3. [3]

      J L Segura, M J Mancheno, F Zamora. Chem. Soc. Rev., 2016, 45 (20):5635~5671. 

    4. [4]

      M S Lohse, T Bein. Adv. Funct. Mater., 2018, 28 (33):1705553. 

    5. [5]

      A P Cote, A I Benin, N W Ockwig et al. Science, 2005, 310 (5751):1166~1170. 

    6. [6]

      H Furukawa, O M Yaghi. J. Am. Chem. Soc., 2009, 131 (25):8875~8883. 

    7. [7]

      J F Dienstmaier, D D Medina, M Dogru et al. ACS Nano, 2012, 6 (8):7234~7242. 

    8. [8]

      C Z Guan, D Wang, L J Wan. Chem. Commun., 2012, 48 (24):2943~2945. 

    9. [9]

      S Spitzer, A R Lahrood, K Macknapp et al. Chem. Commun., 2017, 53 (37):5147~5150. 

    10. [10]

      R W Tilford, S J Mugavero, P J Pellechia et al. Adv. Mater., 2008, 20 (14):2741~2746. 

    11. [11]

      G H Bertrand, V K Michaelis, T C Ong et al. PNAS, 2013, 110 (13):4923~4928. 

    12. [12]

      F J Uribe-Romo, J R Hunt, H Furukawa et al. J. Am. Chem. Soc., 2009, 131 (13):4570~4571. 

    13. [13]

      S Wan, F Gándara, A Asano et al. Chem. Mater., 2011, 23 (18):4094~4097. 

    14. [14]

      Y B Zhang, J Su, H Furukawa et al. J. Am. Chem. Soc., 2013, 135 (44):16336~16339. 

    15. [15]

      S Kandambeth, A Mallick, B Lukose et al. J. Am. Chem. Soc., 2012, 134 (48):19524~19527. 

    16. [16]

      S Kandambeth, D B Shinde, M K Panda et al. Angew. Chem. Int. Ed., 2013, 52 (49):13052~13056. 

    17. [17]

      X Chen, M Addicoat, E Jin et al. J. Am. Chem. Soc., 2015, 137 (9):3241~3247. 

    18. [18]

      H S Xu, S Y Ding, W K An et al. J. Am. Chem. Soc., 2016, 138 (36):11489~11492. 

    19. [19]

      P Kuhn, M Antonietti, A Thomas. Angew. Chem. Int. Ed., 2008, 47 (18):3450~3453. 

    20. [20]

      M J Bojdys, J Jeromenok, A Thomas et al. Adv. Mater., 2010, 22 (19):2202~2205. 

    21. [21]

      S Ren, M J Bojdys, R Dawson et al. Adv. Mater., 2012, 24 (17):2357~2361. 

    22. [22]

      X Zhu, C Tian, S M Mahurin et al. J. Am. Chem. Soc., 2012, 134 (25):10478~10484. 

    23. [23]

      F J Uribe-Romo, C J Doonan, H Furukawa et al. J. Am. Chem. Soc., 2011, 133 (30):11478~11481. 

    24. [24]

      G Das, D B Shinde, S Kandambeth et al. Chem. Commun., 2014, 50 (84):12615~12618. 

    25. [25]

      S Dalapati, S Jin, J Gao et al. J. Am. Chem. Soc., 2013, 135 (46):17310~17313. 

    26. [26]

      S B Alahakoon, C M Thompson, A X Nguyen et al. Chem. Commun., 2016, 52 (13):2843~2845. 

    27. [27]

      Q Fang, Z Zhuang, S Gu et al. Nat. Commun., 2014, 5:4503. 

    28. [28]

      Y Zeng, R Zou, Z Luo et al. J. Am. Chem. Soc., 2015, 137 (3):1020~1023. 

    29. [29]

      B Zhang, M Wei, H Mao et al. J. Am. Chem. Soc., 2018, 140 (40):12715~12719. 

    30. [30]

      M G Rabbani, A K Sekizkardes, Z Kahveci et al. Chem. Eur. J., 2013, 19 (10):3324~3328. 

    31. [31]

      Z Li, X Feng, Y Zou et al. Chem. Commun., 2014, 50 (89):13825~13828. 

    32. [32]

      Z Li, Y Zhi, X Feng et al. Chem. Eur. J., 2015, 21 (34):12079~12084. 

    33. [33]

      D Cao, J Lan, W Wang et al. Angew. Chem. Int. Ed., 2009, 48 (26):4730~4733. 

    34. [34]

      Y Li, R T Yang. AIChE J., 2008, 54 (1):269~279. 

    35. [35]

      J Dong, Y Wang, G Liu et al. CrystEngComm., 2017, 19 (33):4899~4904. 

    36. [36]

      M S Lohse, T Stassin, G Naudin et al. Chem. Mater., 2016, 28 (2):626~631. 

    37. [37]

      X Zhu, S An, Y Liu et al. AIChE J., 2017, 63 (8):3470~3478. 

    38. [38]

      S Kandambeth, B P Biswal, H D Chaudhari et al. Adv. Mater., 2017, 29 (2):1603945. 

    39. [39]

      K Dey, M Pal, K C Rout et al. J. Am. Chem. Soc., 2017, 139 (37):13083~13091. 

    40. [40]

      N Huang, L Zhai, H Xu et al. J. Am. Chem. Soc., 2017, 139 (6):2428~2434. 

    41. [41]

      Q Sun, B Aguila, J Perman et al. J. Am. Chem. Soc., 2017, 139 (7):2786~2793. 

    42. [42]

      Z Li, H Li, X Guan et al. J. Am. Chem. Soc., 2017, 139 (49):17771~17774. 

    43. [43]

      H Wang, F Jiao, F Gao et al. Talanta, 2017, 166:133~140. 

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    5. [5]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    10. [10]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    11. [11]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    12. [12]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    13. [13]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    14. [14]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    15. [15]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Zhi FANGLiang SUNMingze ZHENGWenhao SHENGHongliang HUANGChongli ZHONG . An aluminum-based metal-organic framework with slit pores for the efficient separation and recovery of electronic specialty gas C3F8. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2054-2062. doi: 10.11862/CJIC.20250096

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

Metrics
  • PDF Downloads(12)
  • Abstract views(1355)
  • HTML views(213)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return