Citation: Napha Sudachom, Chompunuch Warakulwit, Chaiwat Prapainainar, Thongthai Witoon, Paweena Prapainainar. One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: Synthesis and characterization[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(5): 596-607. shu

One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: Synthesis and characterization

  • Corresponding author: Paweena Prapainainar, fengpwn@ku.ac.th
  • Received Date: 21 December 2016
    Revised Date: 9 March 2017

    Fund Project: the Institutional Research Grant IRG598004

Figures(11)

  • The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R (f-CB), functionalized multi-walled carbon nanotubes (f-MWCNT), and mesoporous carbon (PC-Zn-succinic) by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction (EOR) for direct ethanol fuel cell (DEFC). It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion. The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping, which was relevant to the efficiency of the catalysts. Moreover, the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding. The activity and stability for ethanol electrooxidation reaction (EOR) were investigated using cyclic voltammetry and chronoamperometry, respectively. The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction. Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR. Moreover, the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC.
  • 加载中
    1. [1]

      WANG Z B, YIN G P, ZHANG J, SUN Y C, SHI P F. Investigation of ethanol electrooxidation on a Pt-Ru-Ni/C catalyst for a direct ethanol fuel cell[J]. J Power Sources, 2006,160(1):37-43. doi: 10.1016/j.jpowsour.2006.01.021

    2. [2]

      HASSAN H B. Electrodeposited Pt and Pt-Sn nanoparticles on Ti as anodes for direct methanol fuel cells[J]. J Fuel Chem Technol, 2009,37(3):346-354. doi: 10.1016/S1872-5813(09)60024-4

    3. [3]

      PARREIRA L S, DA SILVA J C M, D'VILLA-SILVA M, SIMÕES F C, GARCIA S, GAUBEUR I, CORDEIRO M A L, LEITE E R, DOS SANTOS M C. PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction:Ni stability study[J]. Electrochim Acta, 2013,96:243-252. doi: 10.1016/j.electacta.2013.02.054

    4. [4]

      NETO A O, DIAS R R, TUSI M M, LINARDI M, SPINACÉ E V. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process[J]. J Power Sources, 2007,166(1):87-91. doi: 10.1016/j.jpowsour.2006.12.088

    5. [5]

      RIBADENEIRA E, HOYOS B A. Evaluation of Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells[J]. J Power Sources, 2008,180(1):238-242. doi: 10.1016/j.jpowsour.2008.01.084

    6. [6]

      WANG W, WANG R, WANG H, JI S, KEY J, LI X, LEI Z. An advantageous method for methanol oxidation:Design and fabrication of a nanoporous PtRuNi trimetallic electrocatalyst[J]. J Phys Chem C, 2011,196(22):9346-9351.  

    7. [7]

      SOUNDARARAJAN D, PARK J H, KIM K H, KO J M. Pt-Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells[J]. Curr Appl Phys, 2012,12(3):854-859. doi: 10.1016/j.cap.2011.11.020

    8. [8]

      BEYHAN S, LÉGER J-M, KADIRGAN F. Understanding the influence of Ni, Co, Rh and Pd addition to PtSn/C catalyst for the oxidation of ethanol by in situ Fourier transform infrared spectroscopy[J]. Appl Catal B:Environ, 2014,144:66-74. doi: 10.1016/j.apcatb.2013.07.020

    9. [9]

      SUDACHOM N, WARAKULWIT C, PARPAINAINAR P. The effect of ternary catalyst atomic ratios (PtRuSn/C and PtRuNi/C) on ethanol electrooxidation for direct ethanol fuel cell[J]. Key Eng Mater, 2015,659:247-251. doi: 10.4028/www.scientific.net/KEM.659

    10. [10]

      ZHOU Z, WANG S, ZHOU W, WANG G, JIANG L, LI W, SONG S, LIU J, SUN G, XIN Q. Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell[J]. Chem Commun, 2003(3):394-395. doi: 10.1039/b211075j

    11. [11]

      MARTÍNEZ-HUERTA M V, ROJAS S, GÓMEZ DE LA FUENTE J L, TERREROS P, PEÑA M A, FIERRO J L G. Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications[J]. Appl Catal B:Environ, 2006,69(1/2):75-84.  

    12. [12]

      LIU Z, GUO B, HONG L, LIM T H. Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation[J]. Electrochem Commun, 2006,8(1):83-90. doi: 10.1016/j.elecom.2005.10.019

    13. [13]

      LIU C W, CHANG Y W, WEI Y C, WANG K W. The effect of oxygen containing species on the catalytic activity of ethanol oxidation for PtRuSn/C catalysts[J]. Electrochim Acta, 2011,56(5):2574-2581. doi: 10.1016/j.electacta.2010.11.013

    14. [14]

      JONGSOMJIT S, SOMBATMANKHONG K, PRAPAINAINAR P. Effect of acid functionalised carbon supports for Pd-Ni-Sn catalyst on ethanol oxidation reaction[J]. RSC Adv, 2015,5(75):61298-61308. doi: 10.1039/C5RA07508D

    15. [15]

      WANG J, YIN G, SHAO Y, WANG Z, GAO Y. Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support[J]. J Phys Chem C, 2008,112(15):5784-5789. doi: 10.1021/jp800186p

    16. [16]

      MUNEENDRA PRASAD A, SANTHOSH C, NIRMALA GRACE A. Carbon nanotubes and polyaniline supported Pt nanoparticles for methanol oxidation towards DMFC applications[J]. Appl Nanosci, 2012,2(4):457-466. doi: 10.1007/s13204-012-0061-4

    17. [17]

      LIU Z L, HUANG R, DENG Y J, CHEN D H, HUANG L, CAI Y R, WANG Q, CHEN S P, SUN S G. Catalyst of Pt nanoparticles loaded on multi-walled carbon nanotubes with high activity prepared by electrodeposition without supporting electrolyte[J]. Electrochim Acta, 2013,112:919-926. doi: 10.1016/j.electacta.2013.05.139

    18. [18]

      AIYAPPA H B, PACHFULE P, BANERJEE R, KURUNGOT S. Porous carbons from nonporous MOFs:Influence of ligand characteristics on intrinsic properties of end carbon[J]. Cryst Growth Des, 2013,13(10):4195-4199. doi: 10.1021/cg401122u

    19. [19]

      XI K, CAO S, PENG X, DUCATI C, KUMAR R V, CHEETHAM A K. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries[J]. Chem Commun (Camb), 2013,49(22):2192-2194. doi: 10.1039/c3cc38009b

    20. [20]

      LIM S, SUH K, KIM Y, YOON M, PARK H, DYBTSEV D N, KIM K. Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks[J]. Chem Commun (Camb), 2012,48(60):7447-7449. doi: 10.1039/c2cc33439a

    21. [21]

      LÁZARO M J, CELORRIO V, CALVILLO L, PASTOR E, MOLINER R. Influence of the synthesis method on the properties of Pt catalysts supported on carbon nanocoils for ethanol oxidation[J]. J Power Sources, 2011,196(9):4236-4241. doi: 10.1016/j.jpowsour.2010.10.055

    22. [22]

      CALVILLO L, CELORRIO V, MOLINER R, LÁZARO M J. Influence of the support on the physicochemical properties of Pt electrocatalysts:Comparison of catalysts supported on different carbon materials[J]. Mater Chem Phys, 2011,127(1/2):335-341.  

    23. [23]

      SCHLANGE A, DOS SANTOS A R, HASSE B, ETZOLD B J M, KUNZ U, TUREK T. Titanium carbide-derived carbon as a novel support for platinum catalysts in direct methanol fuel cell application[J]. J Power Sources, 2012,199:22-28. doi: 10.1016/j.jpowsour.2011.09.107

    24. [24]

      STEIN A, WANG Z, FIERKE M A. Functionalization of porous carbon materials with designed pore architecture[J]. Adv Mater, 2009,21(3):265-293. doi: 10.1002/adma.v21:3

    25. [25]

      XUE P, GAO J, BAO Y, WANG J, LI Q, WU C. An analysis of microstructural variations in carbon black modified by oxidation or ultrasound[J]. Carbon, 2011,49(10):3346-3355. doi: 10.1016/j.carbon.2011.04.040

    26. [26]

      UNGÁR T, GUBICZA J, RIBÁRIK G, PANTEA C, ZERDA T W. Microstructure of carbon blacks determined by X-ray diffraction profile analysis[J]. Carbon, 2002,40(6):929-937. doi: 10.1016/S0008-6223(01)00224-X

    27. [27]

      LI W, LIANG C, ZHOU W, QIU J, ZH OU, SUN G, XIN Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells[J]. J Phys Chem B, 2003,107(26):6292-6299. doi: 10.1021/jp022505c

    28. [28]

      MEN X H, ZHANG Z Z, SONG H J, WANG K, JIANG W. Functionalization of carbon nanotubes to improve the tribological properties of poly (furfuryl alcohol) composite coatings[J]. Compos Sci Technol, 2008,68(3/4):1042-1049.  

    29. [29]

      OSORIO A G, SILVEIRA I C L, BUENO V L, BERGMANN C P. H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media[J]. Appl Surf Sci, 2008,255(5):2485-2489. doi: 10.1016/j.apsusc.2008.07.144

    30. [30]

      HUANG W, WANG Y, LUO G, WEI F. 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing[J]. Carbon, 2003,41(13):2585-2590. doi: 10.1016/S0008-6223(03)00330-0

    31. [31]

      YUDIANTI R, ONGGO H, SUDIRMA N, SAITO Y, IWATA T, AZUMA J I. Analysis of functional group sited on multi-wall carbon nanotube surface[J]. Open Mater Sci J, 2011,5:242-247. doi: 10.2174/1874088X01105010242

    32. [32]

      WU G, CHEN Y S, XU B Q. Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation[J]. Electrochem Commun, 2005,7(12):1237-1243. doi: 10.1016/j.elecom.2005.07.015

    33. [33]

      ASHOK KUMAR N, GANAPATHY H S, KIM J S, JEONG Y S, JEONG Y T. Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites[J]. Eur Polym J, 2008,44(3):579-586. doi: 10.1016/j.eurpolymj.2007.12.009

    34. [34]

      MARZORATI S, RAGG E M, LONGHI M, FORMARO L. Low-temperature intermediates to oxygen reduction reaction catalysts based on amine-modified metal-loaded carbons. An XPS and ss-NMR investigation[J]. Mater Chem Phys, 2015,162:234-243. doi: 10.1016/j.matchemphys.2015.05.063

    35. [35]

      PAN X, BAO X. Reactions over catalysts confined in carbon nanotubes[J]. Chem Commun, 2008(47):6271-6281. doi: 10.1039/b810994j

    36. [36]

      PARK K W, CHOI J H, KWON B K, LEE S A, SUNG Y E, HA H Y, HONG S A, KIM H, WIECKOWSKI A. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation[J]. J Phys Chem B, 2002,106(8):1869-1877. doi: 10.1021/jp013168v

    37. [37]

      WU G, SWAIDAN R, CUI G. Electrooxidations of ethanol, acetaldehyde and acetic acid using PtRuSn/C catalysts prepared by modified alcohol-reduction process[J]. J Power Sources, 2007,172(1):180-188. doi: 10.1016/j.jpowsour.2007.07.034

    38. [38]

      BEYHAN S, LÉGER J M, KADIRGAN F. Pronounced synergetic effect of the nano-sized PtSnNi/C catalyst for ethanol oxidation in direct ethanol fuel cell[J]. Appl Catal B:Environ, 2013,130-131:305-313. doi: 10.1016/j.apcatb.2012.11.007

    39. [39]

      CUNHA E M, RIBEIRO J, KOKOH K B, DE ANDRADE A R. Preparation, characterization and application of Pt-Ru-Sn/C trimetallic electrocatalysts for ethanol oxidation in direct fuel cell[J]. Int J Hydrogen Energy, 2011,36(17):11034-11042. doi: 10.1016/j.ijhydene.2011.06.011

    40. [40]

      LÓPEZ-SUÁREZ F E, BUENO-LÓPEZ A, EGUILUZ K I B, SALAZAR-BANDA G R. Pt-Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells:Effect of the precursor addition order[J]. J Power Sources, 2014,268:225-232. doi: 10.1016/j.jpowsour.2014.06.042

    41. [41]

      GUO J W, ZHAO T S, PRABHURAM J, CHEN R, WONG C W. Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells[J]. Electrochim Acta, 2005,51(4):754-763. doi: 10.1016/j.electacta.2005.05.056

    42. [42]

      THEPKAEW J, THERDTHIANWONG S, THERDTHIANWONG A, KUCERNAK A, WONGYAO N. Promotional roles of Ru and Sn in mesoporous PtRu and PtRuSn catalysts toward ethanol electrooxidation[J]. Int J Hydrogen Energy, 2013,38(22):9454-9463. doi: 10.1016/j.ijhydene.2012.12.038

    43. [43]

      DOU M, HOU M, LI Z, WANG F, LIANG D, SHAO Z, YI B. Pt/WO3/C nanocomposite with parallel WO3 nanorods as cathode catalyst for proton exchange membrane fuel cells[J]. J Energy Chem, 2015,24(1):39-44. doi: 10.1016/S2095-4956(15)60282-0

    44. [44]

      JIA Y J, JIANG J C, SUN K, LU T H. Effect of Pt/Au atomic ratio in active-carbon-supported Au-Pt catalysts on its cathodic performance in direct formic acid fuel cells[J]. J Fuel Chem Technol, 2011,39(10):792-795. doi: 10.1016/S1872-5813(11)60046-7

    45. [45]

      MEI Z, LI Y, FAN M, ZHAO L, ZHAO J. Effect of the interactions between Pt species and ceria on Pt/ceria catalysts for water gas shift:The XPS studies[J]. Chem Eng J, 2015,259:293-302. doi: 10.1016/j.cej.2014.07.125

    46. [46]

      YI L, WEI W, ZHAO C, YANG C, TIAN L, LIU J, WANG X. Electrochemical oxidation of sodium borohydride on carbon supported Pt-Zn nanoparticle bimetallic catalyst and its implications to direct borohydride-hydrogen peroxide fuel cell[J]. Electrochim Acta, 2015,158:209-218. doi: 10.1016/j.electacta.2015.01.111

    47. [47]

      ZHAO J, LI H, LIU Z, HU W, ZHAO C, SHI D. An advanced electrocatalyst with exceptional eletrocatalytic activity via ultrafine Pt-based trimetallic nanoparticles on pristine graphene[J]. Carbon, 2015,87:116-127. doi: 10.1016/j.carbon.2015.01.038

    48. [48]

      WANG Z B, ZUO P J, WANG G J, DU C Y, YIN G P. Effect of Ni on PtRu/C catalyst performance for ethanol electrooxidation in acidic medium[J]. J Power Sources, 2008,112(16):6582-6587.  

    49. [49]

      PARKINSON C R, WALKER M, MCCONVILLE C F. Reaction of atomic oxygen with a Pt (111) surface:Chemical and structural determination using XPS, CAICISS and LEED[J]. Surf Sci, 2003,545(1/2):19-33.  

    50. [50]

      CARMO M, PAGANIN V A, ROSOLEN J M, GONZALEZ E R. Alternative supports for the preparation of catalysts for low-temperature fuel cells:The use of carbon nanotubes[J]. J Power Sources, 2005,142(1/2):169-176.  

    51. [51]

      BESSEL C A, LAUBERNDS K, RODRIGUEZ N M, BAKER R T K. Graphite nanofibers as an electrode for fuel cell applications[J]. J Phys Chem B, 2001,105(6):1115-1118. doi: 10.1021/jp003280d

    52. [52]

      STEVANOVIĆ S, TRIPKOVIĆ D, ROGAN J, POPOVIĆ K, LOVIĆ J, TRIPKOVIĆ A, JOVANOVIĆ V M. Microwave-assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation[J]. J Solid State Electr, 2012,16(10):3147-3157. doi: 10.1007/s10008-012-1755-y

    53. [53]

      STEVANOVIĆ S, TRIPKOVIĆ D, ROGAN J, MINIĆ D, GAVRILOVIĆ A, TRIPKOVIĆ A, JOVANOVIĆ V M. Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation[J]. Russ J Phys Chem A, 2011,85(13):2299-2304. doi: 10.1134/S0036024411130309

    54. [54]

      JAFRI R I, RAMAPRABHU S. Multi walled carbon nanotubes based micro direct ethanol fuel cell using printed circuit board technology[J]. Int J Hydrogen Energy, 2010,35(3):1339-1346. doi: 10.1016/j.ijhydene.2009.11.067

    55. [55]

      CHEN J, JIANG C, LU H, FENG L, YANG X, LI L, WANG R. Solvent effects on Pt-Ru/C catalyst for methanol electro-oxidation[J]. J Nat Gas Chem, 2009,18(3):341-345. doi: 10.1016/S1003-9953(08)60114-0

    56. [56]

      COLMATI F, ANTOLINI E, GONZALEZ E R. Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts[J]. J Power Sources, 2006,157(1):98-103. doi: 10.1016/j.jpowsour.2005.07.087

    57. [57]

      YOO J S, KIM H T, JOH H-I, KIM H, MOON S H. Preparation of a CO-tolerant PtRuxSny/C electrocatalyst with an optimal Ru/Sn ratio by selective Sn-deposition on the surfaces of Pt and Ru[J]. Int J Hydrogen Energy, 2011,36(3):1930-1938. doi: 10.1016/j.ijhydene.2010.11.061

    58. [58]

      DONG L L, TONG X L, WANG Y Y, JIN G Q, GUO X Y. Boron-doped silicon carbide supported Pt catalyst for methanol electrooxidation[J]. J Fuel Chem Technol, 2014,42(7):845-850. doi: 10.1016/S1872-5813(14)60036-0

  • 加载中
    1. [1]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    2. [2]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    3. [3]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    4. [4]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    5. [5]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    6. [6]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    7. [7]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    8. [8]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    9. [9]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    10. [10]

      Quanxing MaoZhengliang WangZhinan HuZiqi YangHui LiYali YaoZijun YongTianyi Ma . Facial detection of formaldehyde by using acidichromic carbon dots and the reaction between formaldehyde and ammonium chloride. Chinese Chemical Letters, 2025, 36(7): 110499-. doi: 10.1016/j.cclet.2024.110499

    11. [11]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    12. [12]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    13. [13]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    14. [14]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    15. [15]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    18. [18]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    19. [19]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    20. [20]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

Metrics
  • PDF Downloads(3)
  • Abstract views(1516)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return