Citation: DUAN Yu, CHENG Hao, WU Shu-bin. Density functional theory study on the effect of Cα-OH functional group modification on the homolytic cracking reaction routes during the pyrolysis of lignin dimer[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(12): 1440-1449. shu

Density functional theory study on the effect of Cα-OH functional group modification on the homolytic cracking reaction routes during the pyrolysis of lignin dimer

  • Corresponding author: WU Shu-bin, shubinwu@scut.edu.cn
  • Received Date: 29 August 2019
    Revised Date: 5 November 2019

    Fund Project: The project was supported by the Natural Sciences Foundation of China (31870558, 31670582)the Natural Sciences Foundation of China 31670582the Natural Sciences Foundation of China 31870558

Figures(7)

  • Density functional theory method was used to calculate the bond dissociation energies of the Caromatic-Cα, Cα-Cβ, Cβ-O bond, and Caromatic-O bonds in four lignin dimer model compounds, viz., (2-(2-methoxyphenoxy)-1-phenylethan-1-ol, 2-(2-methoxyphenoxy)-1-phenylethan-1-one, 1-methoxy-2-(2-methoxy-2-phenylethoxy)benzene, and 2-(2-methoxyphenoxy)-1-phenylethyl acetate; the homolytic cracking reaction during pyrolysis of these dimers was then invetigated and the formation pathways of pyrolysis products of different dimers were analyzed. The results show that the homogenization of Cβ-O bond is the main reaction in the initial pyrolysis of dimer, whereas the homolysis of Cα-Cβ bond is a competitive reaction. After the oxidation and acetylation of Cα-OH, the bond dissociation energy of Cβ-O bond decreases, whereas the dissociation energy of Cα-Cβ bond increases, ccompanied with an increase in the probability of the Cβ-O bond dissociation and a decrease in the competitive ability of Cα-Cβ bond homolysis. For the pyrolysis of four model compounds, the main aromatic products include benzyl alcohol, toluene, benzaldehyde, guaiacol, etc. The selective modification of the Cα-OH functional groups can regulate the types of pyrolysis products. In particular, the product types for the pyrolysis of model compounds modified by oxidation become less, accompanied with an increase in the selectivity to ceratin products. Ethylbenzene and toluene can be produced from the hydrolysis of dimers modified by methylation and acetylation.
  • 加载中
    1. [1]

      LIU X, WEI W, WU S, LEI M, LIU Y. A promptly approach from monosaccharides of biomass to oligosaccharides via sharp-quenching thermo conversion (SQTC)[J]. Carbohydr Polym, 2018,189:204-209. doi: 10.1016/j.carbpol.2018.01.107

    2. [2]

      LEI M, WU S, LIANG J, LIU C. Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis[J]. J Anal Appl Pyrolysis, 2019,138:249-260. doi: 10.1016/j.jaap.2019.01.004

    3. [3]

      ZOU R, WANG Y, JIANG L, YU Z, ZHAO Y, WU Q, DAI L, KE L, LIU Y, RUAN R. Microwave-assisted co-pyrolysis of lignin and waste oil catalyzed by hierarchical ZSM-5/MCM-41 catalyst to produce aromatic hydrocarbons[J]. Bioresour Technol, 2019,289121609. doi: 10.1016/j.biortech.2019.121609

    4. [4]

      SHUAI L, AMIRI M T, QUESTELL-SANTIAGO Y M, HEROGUEL F, LI Y, KIM H, MEILAN R, CHAPPLE C, RALPH J, LUTERBACHER J S. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J]. Science, 2016,354(6310):329-333. doi: 10.1126/science.aaf7810

    5. [5]

      RAGAUSKAS A J, BECKHAM G T, BIDDY M J, CHANDRA R, CHEN F, DAVIS M F, DAVISON B H, DIXON R A, GILNA P, KELLER M, LANGAN P, NASKAR A K, SADDLER J N, TSCHAPLINSKI T J, TUSKAN G A, WYMAN C E. Lignin valorization:Improving lignin processing in the biorefinery[J]. Science, 2014,344(6185)1246843. doi: 10.1126/science.1246843

    6. [6]

      DAI G, ZHU Y, YANG J, PAN Y, WANG G, WANG S, REUBROYCHAROEN P. Mechanism study on the pyrolysis of the typical ether linkages in biomass[J]. Fuel, 2019,249:146-153. doi: 10.1016/j.fuel.2019.03.099

    7. [7]

      HA J, HWANG K, KIM Y, JAE J, KIM K H, LEE H W, KIM J, PARK Y. Recent progress in the thermal and catalytic conversion of lignin[J]. Renewable Sustainable Energy Rev, 2019,111:422-441. doi: 10.1016/j.rser.2019.05.034

    8. [8]

      WANG S, DAI G, YANG H, LUO Z. Lignocellulosic biomass pyrolysis mechanism:A state-of-the-art review[J]. Prog Energy Combust, 2017,62:33-86. doi: 10.1016/j.pecs.2017.05.004

    9. [9]

      ARO T, FATEHI P. Production and application of lignosulfonates and sulfonated lignin[J]. ChemSusChem, 2017,10(9):1861-1877. doi: 10.1002/cssc.201700082

    10. [10]

      LORA J H, GLASSER W G. Recent industrial applications of lignin:A sustainable alternative to nonrenewable materials[J]. J Polym Environ, 2002,10(1):39-48.  

    11. [11]

      KAWAMOTO H, RYORITANI M, SAKA S. Different pyrolytic cleavage mechanisms of β-ether bond depending on the side-chain structure of lignin dimers[J]. J Anal Appl Pyrolysis, 2008,81(1):88-94. doi: 10.1016/j.jaap.2007.09.006

    12. [12]

      CHEN Y, FANG Y, YANG H, XIN S, ZHANG X, WANG X, CHEN H. Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures[J]. Fuel, 2019,248:1-7. doi: 10.1016/j.fuel.2019.03.070

    13. [13]

      KAWAMOTO H, NAKAMURA T, SAKA S. Pyrolytic cleavage mechanisms of lignin-ether linkages:A study on p-substituted dimers and trimers[J]. Holzforschung, 2008,62(1):50-56. doi: 10.1515/HF.2008.007

    14. [14]

      YERRAYYA A, SURIAPPARAO D V, NATARAJAN U, VINU R. Selective production of phenols from lignin via microwave pyrolysis using different carbonaceous susceptors[J]. Bioresour Technol, 2018,270:519-528. doi: 10.1016/j.biortech.2018.09.051

    15. [15]

      JIANG W, WU S, LUCIA L A, CHU J. A comparison of the pyrolysis behavior of selected β-O-4 type lignin model compounds[J]. J Anal Appl Pyrolysis, 2017,125:185-192. doi: 10.1016/j.jaap.2017.04.003

    16. [16]

      JIANG W, CHU J, WU S, LUCIA L A. Modeling pyrolytic behavior of pre-oxidized lignin using four representative β-ether-type lignin-like model polymers[J]. Fuel Process Technol, 2018,176:221-229. doi: 10.1016/j.fuproc.2018.03.041

    17. [17]

      KIM J, HAFEZI-SEFAT P, CADY S, SMITH R G, BROWN R C. Premethylation of lignin hydroxyl functionality for improving storage stability of oil from solvent liquefaction[J]. Energy Fuels, 2019,33(2):1248-1255. doi: 10.1021/acs.energyfuels.8b03894

    18. [18]

      ZHU G, QIU X, ZHAO Y, QIAN Y, PANG Y, OUYANG X. Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols[J]. Bioresour Technol, 2016,218:718-722. doi: 10.1016/j.biortech.2016.07.021

    19. [19]

      LOHR T L, LI Z, MARKS T J. Selective ether/ester C-O cleavage of an acetylated lignin model via tandem catalysis[J]. ACS Catal, 2015,5(11):7004-7007. doi: 10.1021/acscatal.5b01972

    20. [20]

      HUANG J, LIU C, WU D, TONG H, REN L. Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound[J]. J Anal Appl Pyrolysis, 2014,109:98-108. doi: 10.1016/j.jaap.2014.07.007

    21. [21]

      BRITT P F, BUCHANAN A C, COONEY M J, MARTINEAU D R. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds[J]. J Org Chem, 2000,65(5):1376-1389. doi: 10.1021/jo991479k

    22. [22]

      BESTE A, BUCHANAN A C, BRITT P F, HATHORN B C, HARRISON R J. kinetic analysis of the pyrolysis of phenethyl phenyl ether:Computational prediction of α/β-selectivities[J]. J Phys Chem A, 2007,111:12118-12126. doi: 10.1021/jp075861+

    23. [23]

      BRITT P F, KIDDER M K, BUCHANAN A C. Oxygen substituent effects in the pyrolysis of phenethyl phenyl ethers[J]. Energy Fuels, 2007,21(6):3102-3108. doi: 10.1021/ef700354y

    24. [24]

      HUANG X, LIU C, HUANG J, LI H. Theory studies on pyrolysis mechanism of phenethyl phenyl ether[J]. Comput Theor Chem, 2011,976(1/3):51-59.  

    25. [25]

      CHEN L, YE X, LUO F, SHAO J, LU Q, FANG Y, WANG X, CHEN H. Pyrolysis mechanism of β-O-4 type lignin model dimer[J]. J Anal Appl Pyrolysis, 2015,115:103-111. doi: 10.1016/j.jaap.2015.07.009

    26. [26]

      ASARE S O, HUANG F, LYNN B C. Characterization and sequencing of lithium cationized β-O-4 lignin oligomers using higher-energy collisional dissociation mass spectrometry[J]. Anal Chim Acta, 2019,1047:104-114. doi: 10.1016/j.aca.2018.09.068

    27. [27]

      JARVIS M W, DAILY J W, CARSTENSEN H, DEAN A M, SHARMA S, DAYTON D C, ROBICHAUD D J, NIMLOS M R. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether[J]. J Phys Chem A, 2011,115(4):428-438. doi: 10.1021/jp1076356

    28. [28]

      FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian09[CP]. Gaussian, Inc.Pittsburgh PA, 2009.

    29. [29]

      ELDER T. A computational study of pyrolysis reactions of lignin model compounds[J]. Holzforschung, 2010,64(4).  

    30. [30]

      JIANG X, LU Q, HU B, LIU J, DONG C, YANG Y. Intermolecular interaction mechanism of lignin pyrolysis:A joint theoretical and experimental study[J]. Fuel, 2018,215:386-394. doi: 10.1016/j.fuel.2017.11.084

    31. [31]

      BESTE A, BUCHANAN A C. Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers[J]. Energy Fuels, 2010,24(5):2857-2867. doi: 10.1021/ef1001953

    32. [32]

      PARTHASARATHI R, ROMERO R A, REDONDO A, GNANAKARAN S. Theoretical study of the remarkably diverse linkages in lignin[J]. J Phys Chem Lett, 2011,2(20):2660-2666. doi: 10.1021/jz201201q

    33. [33]

      BESTE A, BUCHANAN A C. Kinetic simulation of the thermal degradation of phenethyl phenyl ether, a model compound for the β-O-4 linkage in lignin[J]. Chem Phys Lett, 2012,550:19-24. doi: 10.1016/j.cplett.2012.08.040

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    12. [12]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    16. [16]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(9)
  • Abstract views(749)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return