Citation: ZHAO Hai-dong, LU Zhen, LIU Rui, LI Zuo-peng, GUO Yong. Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(8): 1015-1024. shu

Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation

  • Corresponding author: LU Zhen, luzhen0313@aliyun.com LI Zuo-peng, lizuopeng@126.com
  • Received Date: 14 July 2020
    Revised Date: 24 July 2020

    Fund Project: the Natural Science Foundation of Shanxi 201701D121016the Applied Basic Research Youth Science and Technology Foundation of Shanxi Province of China 201901D211433PhD Research Startup Foundation of Shanxi Datong University 2013-B-16the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province 2019L0737The project was supported by the Natural Science Foundation of Shanxi Province of China (201801D121073), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (2019L0749), Datong Key Research Project of Science and Technology Planning Social Development (2017119), the Applied Basic Research Youth Science and Technology Foundation of Shanxi Province of China (201901D211433), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (2019L0737), 2019 Open Research Fund of Shanxi Province Research Center for Innovative Application of New Mesoporous Materials (MMIA2019106), PhD Research Startup Foundation of Shanxi Datong University (2013-B-16), the Natural Science Foundation of Shanxi (201701D121016) and Natural Science Foundation of Datong (201819)Datong Key Research Project of Science and Technology Planning Social Development 2017119the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province 2019L0749Natural Science Foundation of Datong 2018192019 Open Research Fund of Shanxi Province Research Center for Innovative Application of New Mesoporous Materials MMIA2019106the Natural Science Foundation of Shanxi Province of China 201801D121073

Figures(10)

  • Platinum-silver alloy nanoparticles (PtxAgy NPs) were synthesized in a molten salt system without using any organic surfactants or solvents; the catalytic role of Ag in the methanol electrooxidation reaction (MOR) in alkaline electrolyte over PtxAgy NPs was investigated. The TEM images suggest that Pt52Ag48 nanotubes (NTs) can be obtained when the Pt/Ag ratio in the molten salt precursor reaches 1. The methanol electrooxidation reaction test results indicate that the Pt52Ag48 NTs with a clean surface exhibits a much better catalytic performance than the conventional Pt black in MOR. Meanwhile, the catalytic activity of the Pt52Ag48 NTs is greatly related to the positive potential limit; the peak current of MOR reaches 1.61 mA/μgPt with a positive potential limit from -1.0 to 0.5 V (vs. SCE), which is 1.92 times higher than that with a positive potential limit from -1.0 to 0.1 V (vs. SCE). The Ag element in the surface layer of PtxAgy alloy may promote the MOR through a redox process during the electrochemical cycle. The insight shown in work should be beneficial to the application of PtxAgy alloy in the direct methanol fuel cells (DMFCs).
  • 加载中
    1. [1]

      SAXENA N, PRANEETH N, RAO K, PARIA S. Organization of palladium nanoparticles into fractal patterns for highly enhanced catalytic activity and anode material for direct borohydride fuel cells applications[J]. ACS Appl Energy Mater, 2018,1(5):2164-2175. doi: 10.1021/acsaem.8b00211

    2. [2]

      SHARAF O Z, ORHAN M F. An overview of fuel cell technology:Fundamentals and applications[J]. Renewable Sustainable Energ Rev, 2014,32:810-853. doi: 10.1016/j.rser.2014.01.012

    3. [3]

      STAMENKOVIC V R, FOWLER B, MUN B S, WANG G, ROSS P N, LUCAS C A, MARKOVIĆ N M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability[J]. Science, 2007,5811:493-497.  

    4. [4]

      GASTEIGER H A, MARKOVIĆ N M. Just a dream-or future reality?[J]. Science, 2009,324(5923):48-49. doi: 10.1126/science.1172083

    5. [5]

      GASTEIGER H A, KOCHA S S, SOMPALLI B, WAGNER F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl Catal B:Environ, 2005,56(1):9-35.  

    6. [6]

      YANG H, DAI L, XU D, FANG J, ZOU S. Electrooxidation of methanol and formic acid on PtCu nanoparticles[J]. Electrochim Acta, 2010,55(27):8000-8004. doi: 10.1016/j.electacta.2010.03.026

    7. [7]

      CHEN J, LIM B, LEE E P, XIA Y. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications[J]. Nano Today, 2009,4(1):81-95. doi: 10.1016/j.nantod.2008.09.002

    8. [8]

      TIAN N, ZHOU Z Y, SUN S G, DING Y, WANG Z L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007,316(5825):732-735. doi: 10.1126/science.1140484

    9. [9]

      HUANG X, ZHAO Z, FAN J, TAN Y, ZHENG N. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets[J]. J Am Chem Soc, 2011,133(13):4718-4721. doi: 10.1021/ja1117528

    10. [10]

      TIAN N, ZHOU Z Y, SUN S G. Platinum metal catalysts of high-index surfaces:From single-crystal planes to electrochemically shape-controlled nanoparticles[J]. J Phys Chem C, 2008,112(50):19801-19817. doi: 10.1021/jp804051e

    11. [11]

      LIM B, JIANG M, CAMARGO P H C, CHO E C, TAO J, LU X, ZHU Y, XIA Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009,324(5932):1302-1305. doi: 10.1126/science.1170377

    12. [12]

      XU D, LIU Z, YANG H, LIU Q, ZHANG J, FANG J, ZOU S, SUN K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes[J]. Angew Chem Int Ed, 2009,48(23):4217-4221. doi: 10.1002/anie.200900293

    13. [13]

      HONG F, SUN S, YOU H, YANG S, FANG J, GUO S, YANG Z, DING B, SONG X. Cu2O template strategy for the synthesis of structure-definable noble metal alloy mesocages[J]. Cryst Growth Des, 2011,11(9):3694-3697. doi: 10.1021/cg2001893

    14. [14]

      XU H, SONG P, WANG J, DU Y. Shape-controlled synthesis of platinum-copper nanocrystals for efficient liquid fuel electrocatalysis[J]. Langmuir, 2018,34(27):7981-7988. doi: 10.1021/acs.langmuir.8b01729

    15. [15]

      ZHAO H, YU C, YOU H, YANG S, GUO Y, DING B, SONG X. A green chemical approach for preparation of PtxCuy nanoparticles with a concave surface in molten salt for methanol and formic acid oxidation reactions[J]. J Mater Chem, 2012,22(11):4780-4789. doi: 10.1039/c2jm15792f

    16. [16]

      ZHANG J, FANG J. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes[J]. J Am Chem Soc, 2009,131(51):18543-18547. doi: 10.1021/ja908245r

    17. [17]

      WANG X X, HWANG S, PAN Y T, CHEN K, HE Y, KARAKALOS S, ZHANG H, SPENDELOW J S, SU D, WU G. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction[J]. Nano Lett, 2018,18(7):4163-4171. doi: 10.1021/acs.nanolett.8b00978

    18. [18]

      ZHANG L, FISCHER J, JIA Y, YAN X, XU W, WANG X, CHEN J, YANG D, LIU H, ZHUANG L, HANKEL M, SEARLES D J, HUANG K, FENG S, BROWN C L, YAO X. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction[J]. J Am Chem Soc, 2018,140(34):10757-10763. doi: 10.1021/jacs.8b04647

    19. [19]

      YANG D, YAN Z, LI B, HIGGINS D C, WANG J, LV H, CHEN Z, ZHANG C. Highly active and durable Pt-Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs[J]. Int J Hydrog Energy, 2016,41(41):18592-18601. doi: 10.1016/j.ijhydene.2016.08.159

    20. [20]

      DING J, BU L, GUO S, ZHAO Z, ZHU E, HUANG Y, HUANG X. Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis[J]. Nano Lett, 2016,16(4):2762-2767. doi: 10.1021/acs.nanolett.6b00471

    21. [21]

      MATIN M A, JANG J H, KWON Y U. PdM nanoparticles (M=Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions[J]. J Power Sources, 2014,262:356-363. doi: 10.1016/j.jpowsour.2014.03.109

    22. [22]

      YANG S, PENG Z, YANG H. Platinum lead nanostructures:Formation, phase behavior, and electrocatalytic properties[J]. Adv Funct Mater, 2008,18(18):2745-2753. doi: 10.1002/adfm.200800266

    23. [23]

      ZHAO H, LIU R, GUO Y, YANG S. Molten salt medium synthesis of wormlike platinum silver nanotubes without any organic surfactant or solvent for methanol and formic acid oxidation[J]. Phys Chem Chem Phys, 2015,17(46):31170-31176. doi: 10.1039/C5CP05641A

    24. [24]

      CAO X, WANG N, HAN Y, GAO C, XU Y, LI M, SHAO Y. PtAg bimetallic nanowires:Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells[J]. Nano Energy, 2015,12:105-114. doi: 10.1016/j.nanoen.2014.12.020

    25. [25]

      WISNIEWSKA J, YANG C, ZIOLEK M. Changes in bimetallic silver-platinum catalysts during activation and oxidation of methanol and propene[J]. Catal Today, 2019,333:89-96. doi: 10.1016/j.cattod.2018.03.001

    26. [26]

      LV J J, LI S S, ZHENG J N, WANG A J, CHEN J R, FENG J J. Facile synthesis of reduced graphene oxide supported PtAg nanoflowers and their enhanced electrocatalytic activity[J]. Int J Hydrog Energy, 2014,39(7):3211-3218. doi: 10.1016/j.ijhydene.2013.12.112

    27. [27]

      LI J, RONG H, TONG X, WANG P, CHEN T, WANG Z. Platinum-silver alloyed octahedral nanocrystals as electrocatalyst for methanol oxidation reaction[J]. J Colloid Interface Sci, 2018,513:251-257. doi: 10.1016/j.jcis.2017.11.039

    28. [28]

      LIU Q, HE Y M, WENG X, WANG A J, YUAN P X, FANG K M, FENG J J. One-pot aqueous fabrication of reduced graphene oxide supported porous PtAg alloy nanoflowers to greatly boost catalytic performances for oxygen reduction and hydrogen evolution[J]. J Colloid Interface Sci, 2018,513:455-463. doi: 10.1016/j.jcis.2017.11.026

    29. [29]

      STAMENKOVIC V R, MUN B S, ARENZ M, MAYRHOFER K J J, LUCAS C A, WANG G, ROSS P N, MARKOVIC N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nat Mater, 2007,6241. doi: 10.1038/nmat1840

    30. [30]

      LIN R, CHE L, SHEN D, CAI X. High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis[J]. Electrochim Acta, 2020,330135251. doi: 10.1016/j.electacta.2019.135251

    31. [31]

      LIN R, CAI X, HAO Z, PU H, YAN H. Rapid microwave-assisted solvothermal synthesis of shape-controlled Pt-Ni alloy nanoparticles for PEMFC[J]. Electrochim Acta, 2018,283:764-771. doi: 10.1016/j.electacta.2018.03.190

    32. [32]

      JIANG Q, JIANG L, HOU H, QI J, WANG S, SUN G. Promoting effect of Ni in PtNi bimetallic electrocatalysts for the methanol oxidation reaction in alkaline media:Experimental and density functional theory studies[J]. J Phys Chem C, 2010,114(46):19714-19722. doi: 10.1021/jp1039755

    33. [33]

      WU F, ZHANG Z, ZHANG F, DUAN D, LI Y, WEI G, LIU S, YUAN Q, WANG E, HAO X. Exploring the role of cobalt in promoting the electroactivity of amorphous Ni-B nanoparticles toward methanol oxidation[J]. Electrochim Acta, 2018,287:115-123. doi: 10.1016/j.electacta.2018.07.106

    34. [34]

      PRABHURAM J, MANOHARAN R. Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid[J]. J Power Sources, 1998,74(1):54-61. doi: 10.1016/S0378-7753(98)00012-3

    35. [35]

      BLIZANAC B B, ROSS P N, MARKOVIC N M. Oxygen electroreduction on Ag(111):The pH effect[J]. Electrochim Acta, 2007,52(6):2264-2271. doi: 10.1016/j.electacta.2006.06.047

    36. [36]

      FENG L, GAO G, HUANG P, WANG X, ZHANG C, ZHANG J, GUO S, CUI D. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation[J]. Nanoscale Res Lett, 2011,6551. doi: 10.1186/1556-276X-6-551

    37. [37]

      HE W, WU X, LIU J, ZHANG K, CHU W, FENG L, HU X, ZHOU W, XIE S. Formation of AgPt alloy nanoislands via chemical etching with tunable optical and catalytic properties[J]. Langmuir, 2010,26:4443-4448. doi: 10.1021/la9034968

    38. [38]

      FENG Y Y, BI L X, LIU Z H, KONG D S, YU Z Y. Significantly enhanced electrocatalytic activity for methanol electro-oxidation on Ag oxide-promoted PtAg/C catalysts in alkaline electrolyte[J]. J Catal, 2012,290:18-25. doi: 10.1016/j.jcat.2012.02.013

    39. [39]

      FENG Y Y, LIU Z H, KONG W Q, YIN Q Y, DU L X. Promotion of palladium catalysis by silver for ethanol electro-oxidation in alkaline electrolyte[J]. Int J Hydrog Energy, 2014,39(6):2497-2504. doi: 10.1016/j.ijhydene.2013.12.004

    40. [40]

      XU J B, ZHAO T S, LIANG Z X. Synthesis of active platinum-silver alloy electrocatalyst toward the formic acid oxidation reaction[J]. J Phys Chem C, 2008,112(44):17362-17367. doi: 10.1021/jp8063933

    41. [41]

      WU J, ZHANG J, PENG Z, YANG S, WAGNER F T, YANG H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts[J]. J Am Chem Soc, 2010,132(14):4984-4985. doi: 10.1021/ja100571h

    42. [42]

      CHEN X, WU G, CHEN J, CHEN X, XIE Z, WANG X. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide[J]. J Am Chem Soc, 2011,133(11):3693-3695. doi: 10.1021/ja110313d

    43. [43]

      MERGA G, SAUCEDO N, CASS L C, PUTHUSSERY J, MEISEL D. "Naked" gold nanoparticles:Synthesis, characterization, catalytic hydrogen evolution, and SERS[J]. J Phys Chem C, 2010,114(35):14811-14818. doi: 10.1021/jp104922a

    44. [44]

      CASWELL K K, BENDER C M, MURPHY C J. Seedless, surfactantless wet chemical synthesis of silver nanowires[J]. Nano Lett, 2003,3(5):667-669. doi: 10.1021/nl0341178

    45. [45]

      SUN S H, YANG D Q, VILLERS D, ZHANG G X, SACHER E, DODELET J P. Template-and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires[J]. Adv Mater, 2008,20(3):571-574. doi: 10.1002/adma.200701408

    46. [46]

      HUANG C, JIANG J, LU M, SUN L, MELETIS E I, HAO Y. Capturing electrochemically evolved nanobubbles by electroless deposition. A facile route to the synthesis of hollow nanoparticles[J]. Nano Lett, 2009,9(12):4297-4301. doi: 10.1021/nl902529y

    47. [47]

      ZHAO H, WU J, YOU H, YANG S, DING B, YANG Z, SONG X, YANG H. In situ chemical vapor reaction in molten salts for preparation of platinum nanosheets via bubble breakage[J]. J Mater Chem, 2012,22(24):12046-12052. doi: 10.1039/c2jm31422c

    48. [48]

      ZHAO H, YANG S, YOU H, WU Y, DING B. Synthesis of surfactant-free Pt concave nanoparticles in a freshly-made or recycled molten salt[J]. Green Chem, 2012,14(11):3197-3203. doi: 10.1039/c2gc35995b

    49. [49]

      PENG Z, YANG H. Ag-Pt alloy nanoparticles with the compositions in the miscibility gap[J]. J Solid State Chem, 2008,181(7):1546-1551. doi: 10.1016/j.jssc.2008.03.013

    50. [50]

      POUND B G, MACDONALD D D, TOMLINSON J W. The electrochemistry of silver in KOH at elevated temperatures-II. Cyclic voltammetry and galvanostatic charging studies[J]. Electrochim Acta, 1980,25(5):563-573. doi: 10.1016/0013-4686(80)87058-7

    51. [51]

      LIMA F, SANCHES C D, TICIANELLI E A. Physical characterization and electrochemical activity of bimetallic platinum-silver particles for oxygen reduction in alkaline electrolyte[J]. J Electrochem Soc, 2005,152(7):1466-1473. doi: 10.1149/1.1933514

    52. [52]

      XU C W, WANG H, SHEN P K, JIANG S P. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells[J]. Adv Mater, 2007,19(23):4256-4259. doi: 10.1002/adma.200602911

    53. [53]

      FENG Y Y, ZHANG G R, MA J H, LIU G, XU B Q. Carbon-supported Pt/Ag nanostructures as cathode catalysts for oxygen reduction reaction[J]. Phys Chem Chem Phys, 2011,13(9):3863-3872. doi: 10.1039/c0cp01612h

    54. [54]

      CHATENET M, GENIES B L, AUROUSSEAU M, DURAND R, ANDOLFATTO F. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide-comparison with platinum[J]. J Appl Electrochem, 2002,32(10):1131-1140. doi: 10.1023/A:1021231503922

    55. [55]

      NAGLE L C, AHERN A J, BURKE D L. Some unusual features of the electrochemistry of silver in aqueous base[J]. J Solid State Electr, 2002,6(5):320-330. doi: 10.1007/s100080100233

    56. [56]

      JOVIC B M, JOVIC V D, STAFFORD G R. Cyclic voltammetry on Ag(111) and Ag(100) faces in sodium hydroxide solutions[J]. Electrochem Commun, 1999,1(6):247-251. doi: 10.1016/S1388-2481(99)00049-1

    57. [57]

      OROZCO G, PÉREZ M C, RINCÓ N A, GUTIÉRREZ C. Electrooxidation of methanol on silver in alkaline medium[J]. J Electroanal Chem, 2000,495(1):71-78.  

  • 加载中
    1. [1]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    2. [2]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    3. [3]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    4. [4]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    5. [5]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    6. [6]

      Ping Liu Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465

    7. [7]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    8. [8]

      Yuetong GaoTong MuXinyue HuYang PangChengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763

    9. [9]

      Shilong LiLiang DuanQiusheng GaoHengliang Zhang . Reduction of methane emission from microbial fuel cells during sulfamethoxazole wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110997-. doi: 10.1016/j.cclet.2025.110997

    10. [10]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    11. [11]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    12. [12]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    13. [13]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    14. [14]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    15. [15]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    16. [16]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    17. [17]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    18. [18]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    19. [19]

      Bowen XuJiahao ChenLulu CuiXinyue LiYuan XueSheng Han . Terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride copolymers: A low dosage and high-efficiency cold flow improver for diesel fuel. Chinese Chemical Letters, 2025, 36(5): 110196-. doi: 10.1016/j.cclet.2024.110196

    20. [20]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

Metrics
  • PDF Downloads(1)
  • Abstract views(742)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return