Citation: LIU Hai-yan, SUN Xin-yan, ZHENG Tao, LIU Zhi-chang. Effects of activation methods on the activation of natural aluminosilicate minerals and zeolite synthesis[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(3): 328-337. shu

Effects of activation methods on the activation of natural aluminosilicate minerals and zeolite synthesis

  • Corresponding author: LIU Hai-yan, klc@cup.edu.cn
  • Received Date: 3 January 2020
    Revised Date: 22 February 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China 21676297The project was supported by the National Natural Science Foundation of China (21676297)

Figures(8)

  • Four natural aluminosilicate minerals including kaolin, rectorite, montmorillonite and illite were activated by thermal activation, alkali fusion activation, sub-molten salt activation and quasi-solid-phase activation method, respectively. Comparing the activation effects of the four methods, it is found that both sub-molten salt method and quasi-solid-phase method present better activation effect at lower energy consumption, which are obviously superior to the other two activation methods. The quasi-solid-phase activation method is the most promising method for activating the natural aluminosilicate minerals due to its much lower energy consumption and more feasible industrial operation. Comparatively, the framework structure of kaolinite rectorite and montmorillonite are relatively more easily to be depolymerized, the structure of illite is much stable, after being sub-molten salt activated and quasi-solid-phase activated, the resulted illite has little active SiO2 and Al2O3 which can be used to synthesize zeolites due to their high chemical reactivity. Therefore, different from the other three natural aluminosilicate minerals, illite is not an ideal raw material for zeolite synthesis.
  • 加载中
    1. [1]

      LIU Y, LIN C X, WU Y G. Characterization of red mud derived from a combined bayer process and bauxite calcination method[J]. J Hazard Mater, 2007,146(1):255-261.  

    2. [2]

      ANDERSON M W, HOLMES S M, HANIF N, CUNDY C S. Hierarchical pore structures through diatom zeolitization[J]. Angew Chem Int Ed, 2000,39(15):2707-2710. doi: 10.1002/1521-3773(20000804)39:15<2707::AID-ANIE2707>3.0.CO;2-M

    3. [3]

      LI T S, LIU H Y, FAN Y, YUAN P, SHI G, BI X T, BAO X J. Synthesis of zeolite Y from natural aluminosilicate minerals for fluid catalytic cracking application[J]. Green Chem, 2012,14(12):3255-3259. doi: 10.1039/c2gc36101a

    4. [4]

      YUE Y Y, LIU H Y, YUAN P, LI T S, YU C, BI H, BAO X J. From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites:A nanoscale depolymerization-reorganization approach[J]. J Catal, 2014,319:200-210. doi: 10.1016/j.jcat.2014.08.009

    5. [5]

      DING J J, LIU H Y, YUAN P, SHI G, BAO X J. Catalytic properties of a hierarchical zeolite synthesized from a natural aluminosilicate mineral without the use of a secondary mesoscale template[J]. ChemCatChem, 2013,5(8):2258-2269. doi: 10.1002/cctc.201300049

    6. [6]

      REYES C A R, WILLIAMS C D, ALARCON C O M. Synthesis of zeolite LTA from thermally treated kaolinite[J]. Rev Fac Ing Univ Antioquia, 2010,53:30-41.  

    7. [7]

      CHO K, NA K, KIM J, TERASAKI O, RYOO R. Zeolite synthesis using hierarchical structure-directing surfactants:Retaining porous structure of initial synthesis gel and precursors[J]. Chem Mater, 2012,24(14):2733-2738. doi: 10.1021/cm300841v

    8. [8]

      LIU H Y, SHEN T, LI T S, YUAN P, SHI G, BAO X J. Green synthesis of zeolites from a natural aluminosilicate mineral rectorite:Effects of thermal treatment temperature[J]. Appl Clay Sci, 2014,90:53-60. doi: 10.1016/j.clay.2014.01.006

    9. [9]

      LIU H Y, SHEN T, WANG W, LI T S, YUE Y Y, BAO X J. From natural aluminosilicate minerals to zeolites:Synthesis of ZSM-5 from rectorites activated via different methods[J]. Appl Clay Sci, 2015,115:201-211. doi: 10.1016/j.clay.2015.07.040

    10. [10]

      YANG J B, LIU H Y, DIAO H J, LI B S, YUE Y Y, BAO X J. A Quasi-solid-phase approach to activate natural minerals for zeolite synthesis[J]. ACS Sustainable Chem Eng, 2017,5(4):3233-3242. doi: 10.1021/acssuschemeng.6b03031

    11. [11]

      YUE Y Y, LIU H Y, YUAN P, YU C, BAO X J. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3[J]. Sci Rep, 2015,5:9270-9280. doi: 10.1038/srep09270

    12. [12]

      WHITE C E, PROVIS J L, THOMAS P, RILEY D P, DEVENTER J J. Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation[J]. J Phys Chem, 2010,114(14):4988-4996. doi: 10.1021/jp911108d

    13. [13]

      RíOS C A, WILLIAMS C D, FULLEN M A. Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods[J]. Appl Clay Sci, 2009,42(3):446-454.  

    14. [14]

      LIU Y, PINNAVAIA T J. Metakaolin as a reagent for the assembly of mesoporous aluminosilicates with hexagonal, cubic and wormhole framework structures from proto-faujasitic nanoclusters[J]. J Mater Chem, 2004,14(23):3416-3420. doi: 10.1039/b410337h

    15. [15]

      SAIKIA N. Characterization, beneficiation and utilization of a kaolinite clay from Assam, India[J]. Appl Clay Sci, 2003,24(1/2):93-103.  

    16. [16]

      WEI B Y, LIU H Y, LI T S, CAO L Y, FAN Y, BAO X J. Natural rectorite mineral:A promising substitute of kaolin for in-situ synthesis of fluid catalytic cracking catalysts[J]. AIChE J, 2010,56(11):2913-2922. doi: 10.1002/aic.12195

    17. [17]

      GARRELS R M. Montmorillonite/illite stability diagrams[J]. Clays Clay Miner, 1984,32(3):161-166. doi: 10.1346/CCMN.1984.0320301

    18. [18]

      HE C L, MAKOVICKY E, ØSBØCK B. Thermal stability and pozzolanic activity of calcined illite[J]. Appl Clay Sci, 1995,9(5):337-354. doi: 10.1016/0169-1317(94)00033-M

    19. [19]

      OKADA K, KAMESHIMA Y, YASUMORI A. Chemical shifts of silicon X-ray photoelectron spectra by polymerization structures of silicates[J]. J Am Ceram Soc, 1998,81(7):1970-1972.  

    20. [20]

      BARR T L, SEAL S, WOZNIAK K, KLINOWSKI J. ESCA studies of the coordination state of aluminium in oxide environments[J]. J Chem Soc Faraday Trans, 1997,93(1):181-186. doi: 10.1039/a604061f

    21. [21]

      LIPPMAA E, MÄGI M, SAMOSON A, ENGELHARDT G, GRIMMER A. Structural studies of silicates by solid-state high-resolution silicon-29 NMR[J]. J Am Chem Soc, 1980,102(15):4889-4893. doi: 10.1021/ja00535a008

    22. [22]

      BERTERMANN R, KROGER N, TACKE R. Solid-state 29Si MAS NMR studies of diatoms:Structural characterization of biosilica deposits[J]. Anal Bioanal Chem, 2003,375(5):630-634. doi: 10.1007/s00216-003-1769-5

    23. [23]

      MADANI A, AZNAR A, SANZ J, SERRATOSA J. 29Si and 27Al NMR study of zeolite formation from alkali-leached kaolinites:Influence of thermal preactivation[J]. J Phys Chem, 1990,94(2):760-765. doi: 10.1021/j100365a046

    24. [24]

      KOUASSI S, ANDJI J, BONNET J, ROSSIGNOL S. Dissolution of waste glasses in high alkaline solutions[J]. Ceram Silik, 2010,54(3):235-240.  

    25. [25]

      ENGELHARDT G. Silicon-29 NMR of Solid Silicates[M]. New York:John Wiley & Sons Ltd, 2007:8-36.

    26. [26]

      ROCHA J, KLINOWSKI J. 29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite[J]. Phys Chem Miner, 1990,17(2):179-186.  

    27. [27]

      MüLLER D, GESSNER W, BEHRENS H J, SCHELER G. Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high-resolution 27Al NMR[J]. Chem Phys Lett, 1981,79(1):59-62. doi: 10.1016/0009-2614(81)85288-8

    28. [28]

      CHANDRASEKHAR S. Influence of metakaolinization temperature on the formation of zeolite 4A from kaolin[J]. Clay Miner, 1996,31(2):253-261. doi: 10.1180/claymin.1996.031.2.11

  • 加载中
    1. [1]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    2. [2]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    3. [3]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    11. [11]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    12. [12]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    15. [15]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    18. [18]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    19. [19]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    20. [20]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

Metrics
  • PDF Downloads(22)
  • Abstract views(1249)
  • HTML views(299)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return