Citation: HUANG Jin-jin, CAI Liang-feng, LIU Xi, YANG Jian-ping, QU Wen-qi, LI Hai-long. Mechanism for the enhancement of the resistance of the OMS-2 mercury oxidation catalyst to sulfur by modifying with cerium[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1433-1441. shu

Mechanism for the enhancement of the resistance of the OMS-2 mercury oxidation catalyst to sulfur by modifying with cerium

  • Corresponding author: LI Hai-long, hailong_li@126.com
  • Received Date: 11 September 2020
    Revised Date: 26 October 2020

    Fund Project: the National Natural Science Foundation of China 51906260The project was supported by the National Natural Science Foundation of China (51776227, 51906260)the National Natural Science Foundation of China 51776227

Figures(9)

  • In view of the poor resistance of manganese oxide octahedral molecular sieve (OMS-2) catalyst to sulfur in the oxidation of elemental mercury, CeO2 was used to modify the OMS-2 catalyst. The mechanism for the enhancement of the resistance of the OMS-2 catalyst to sulfur by modifying with CeO2 was investigated, with the help of thermodynamic analysis, fixed-bed reaction test and various characterization methods like nitrogen sorption, XRD ICP and XPS. The results indicate: The OMS-2 catalyst modified by Ce has a large surface area and void-rich structure, which can adsorb more Hg0 through chemical adsorption; More Mn defects are formed on the OMS-2 catalyst through modifying with Ce, leading to an increase in the electron mobility, the proportion of adsorbed oxygen (Oβ) species, and the density of catalytically active sites; The Ce-modified OMS-2 catalyst can quickly re-oxidize the reduced Hg0 or HgSO4 species (facilely formed on the pristine OMS-2 catalyst surface in the presence of SO2) to HgO, which can then improve the apparent Hg0 oxidation efficiency. The results should be helpful for the development of high-performance anti-thio catalysts for mercury oxidation.
  • 加载中
    1. [1]

      WANG Li-gang, PENG Su-ping, CHEN Chang-he. The experimental study to Hg0 adsorption of fly ash in flue gas[J]. Environ Sci, 2003,24(6):59-62.

    2. [2]

      REN Jian-li, ZHOU Jin-song, LUO Zhong-yang, XU Zhang, ZHANG Xue-mei. Ca-based sorbents for mercury vapor removal from flue gas[J]. J Fuel Chem Technol, 2006,34(5):557-561.

    3. [3]

      ZHAO Y X, MICHAEL D M, EDWIN S O, JOHN H P, GRANT E D. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions[J]. J Air Waste Manage Assoc, 2012,56(5):628-635.

    4. [4]

      WANG F, WANG H M, ZHANG F, ZHU J W, TIAN G, LIU Y, MAO J X. SO2/Hg removal from flue gas by dry FGD[J]. Int J Min Sci Technol, 2012,22(1):107-110.

    5. [5]

      WANG Y Y, SHEN B X, HE C, YUE S J, WANG F M. Simultaneous removal of NO and Hg0 from flue gas over Mn-Ce/Ti-PILCs[J]. Environ Sci Technol, 2015,49(15):9355-9363.

    6. [6]

      YANG W, LIU Y X, WANG Q, PAN J F. Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation[J]. Chem Eng J, 2017,326(15):169-181.

    7. [7]

      XU H M, QU Z, ZONG X, QUAN F Q, MEI J, YAN N Q. Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas[J]. Appl Catal B: Environ, 2016,186(5):30-40.

    8. [8]

      ATRIBAK I, BUENO L A, GARCIA G A, NAVARO P, FRIAS D, MONTES M. Catalytic activity for soot combustion of birnessite and cryptomelane[J]. Appl Catal B: Environ, 2010,93(3/4):267-273.

    9. [9]

      DING Y S, SHEN X F, SITHAMBARAM S, GOMEZ S, KUMAR R, CRISOSTOMO V M B, SUIB S L, AINDOW M. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method[J]. Chem Mater, 2005,17(21):5382-5389.

    10. [10]

      HUANG W M, SHI J L. Water-promoted low-concentration NO removal at room temperature by Mg-doped manganese oxides OMS-2[J]. Appl Catal A: Gen, 2015,507(25):65-74.

    11. [11]

      GANDHE A R, JEANETTE S, REBELLO J, FIGUEIREDO L, FERNANDES J B. Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate[J]. Appl Catal B: Environ, 2007,72(1/2):129-135.

    12. [12]

      ADJIMI S, GARCIA V J, DIAZ J A, RETAILLEAU L, GIL S, PERA T M, GUO Y, GIROIR F A. Highly efficient and stable Ru/K-OMS-2 catalyst for NO oxidation[J]. Appl Catal B: Environ, 2017,219(15):459-466.

    13. [13]

      HERNANDEZ W Y, CENTENO M A, SVETLANA I, PIERRE E, GAIGNEAUXE M, ODRIOZOLA J A. Cu-modified cryptomelane oxide as active catalyst for CO oxidation reactions[J]. Appl Catal B: Environ, 2012,123(23):27-35.

    14. [14]

      LI J F, YAN N Q, QU Z, QIAO S H, YANG S J, GUO Y F, LIU P, JIA J P. Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at Lower Temperatures[J]. Environ Sci Technol, 2010,44(1):426-431.

    15. [15]

      LIU X, JIANG S J, LI H L, YANG J P, YANG Z Q, ZHAO J X, PENG H Y, KAIMIN S. Elemental mercury oxidation over manganese oxide octahedral molecular sieve catalyst at low flue gas temperature[J]. Chem Eng J, 2019,356(15):142-150.

    16. [16]

      WU S J, KATAYAMA R, UDDIN M A, SASAOKA E, XIE Z M. Study on reactivity of HgO over activated carbon with HCl and SO2 in the presence of moisture by temperature-programmed decomposition desorption mass spectrometry[J]. Energy Fuels, 2015,29(10):6598-6604.

    17. [17]

      LI Yang, LIU Bing, YANG He, YANG Da-wei, HU Hao-quan. Removal of elemental mercury(Hg0) from simulated flue gas over MnOx-TiO2 sorbents[J]. J Fuel Chem Technol, 2020,48(5):513-524.

    18. [18]

      WU S J, UDDIN M A, NAGANO S, MASAKI O, SASAOKA E. Fundamental study on decomposition characteristics of mercury compounds over solid powder by temperature-programmed decomposition desorption mass spectrometry[J]. Energy Fuels, 2011,25(2):144-153.

    19. [19]

      HE S, ZHOU J S, ZHU Y Q, LUO Z Y, NI M J, CEN K. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst[J]. Energy Fuels, 2009,23(1):253-259.

    20. [20]

      ZHAO Li, HE Qing-song, LIU Yu, WU Yang-wen, LU Qiang, LIU Song-tao, DONG Chang-qing. Mechanism of Hg2+ reduction in wet flue gas desulfurization liquors[J]. J Fuel Chem Technol, 2017,45(6):755-760.

    21. [21]

      LI H L, WU C Y, LI Y, ZHANG J. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environ Sci Technol, 2011,45(17):7394-400.

    22. [22]

      WANG T, LIU J, YANG Y H, SUI Z F, ZHANG Y S, WANG J W, PAN W P. Catalytic conversion of mercury over Ce doped Mn/SAPO-34 catalyst: Sulphur tolerance and SO2/SO3 conversion[J]. J Hazard Mater, 2020,381(5)120986.

    23. [23]

      WANG Yan-kun. Application of HSC chemistry software in university chemical scientific research[J]. J Henan Ins Edu Nat Sci Ed, 2013,22(2):32-34.

    24. [24]

      GRANITE E J, PENNLINE H W, HARGIS R A. Novel sorbents for mercury removal from flue gas[J]. Ind Eng Chem Res, 2000,39(4):1020-1029.

    25. [25]

      WU Z B, JIANG B Q, YUE L, ZHAO W R, GUAN B H. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method[J]. J Hazard Mater, 2007,145(3):488-494.

    26. [26]

      LI H L, ZHU L, WANG J, LI L Q, SHIH K. Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas[J]. Environ Sci Technol, 2016,50(17):9551-9557.

    27. [27]

      HOU J T, LI Y Z, MAO M Y, ZHAO X J, YUE Y Z. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation[J]. Nanoscale, 2014,6(24):15048-15058.

    28. [28]

      LIU C, CHEN L, LI J, MA L, ARANDIYAN H, DU Y, XU J, HAO J. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3[J]. Environ Sci Technol, 2012,46(11):6182-6189.

    29. [29]

      WANG X Y, LAN Z X, ZHANG K, CHEN J J, JIANG L L, WANG R H. Structure activity relationships of AMn2O4 (A=Cu and Co) spinels in selective catalytic reduction of NOx: Experimental and theoretical study[J]. J Chem Phys C, 2017,121(6):3339-3349.

    30. [30]

      KIVELSON, DANIEL. The determination of the potential constants of SO2 from centrifugal distortion effects[J]. J Chem Phys, 1954,22(5):904-908.

    31. [31]

      WANG Peng-ying. A dissertation submitted in partial fulfllment of the requirements for the degree of doctor of philosophy in engineering[D]. Wuhan: Huazhong University of Science and Technology, 2014.

    32. [32]

      ZHANG Xu-nan. The experimental study on the simultaneous removal of elemental mercury (Hg0) and NO from flue gas by CeO2 modified SCR catalysts[D]. Changsha: Hunan University, 2015.

    33. [33]

      ZHUANG Y, JASON L, RICHARD L, MIKE H, JOHN P. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Process Technol, 2007,88(10):929-934.

    34. [34]

      LAUDAL D L, THOMPSON J S, PAVLISH J H, BRICKET L, CHU P, SRIVASTAVA R K, LEE C W, KILGROE J. Mercury speciation at power plants using SCR and SNCR control technologies[J]. Electron Manager, 2012,53(1):16-22.

    35. [35]

      SUI Z F, ZHANG Y S, LI W H, WILLIAM O, CAO Y, PAN W P. Partitioning effect of mercury content and speciation in gypsum slurry as a function of time[J]. J Therm Anal Calorim, 2015,119(3):1611-1618.

    36. [36]

      ZHANG Y S, ZHAO L L, GUO R T, WANG J W, CAO Y, WILLIAM O, PAN W P. Influences of NO on mercury adsorption characteristics for HBr modified fly ash[J]. Int J Coal Geol, 2017,170(1):77-83.

  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    3. [3]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    6. [6]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    20. [20]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

Metrics
  • PDF Downloads(1)
  • Abstract views(1035)
  • HTML views(197)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return