Prediction model of ash fusion temperature and viscosity in coal gasification
- Corresponding author: ZHANG Jian-sheng, zhang-jsh@tsinghua.edu.cn
Citation:
ZHENG Chang-hao, WANG Qian, ZHANG Jian-sheng. Prediction model of ash fusion temperature and viscosity in coal gasification[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(5): 521-527.
LOLJA S A, HAXHI H, MARTIN D J. Correlations in the properties of Albanian coals[J]. Fuel, 2002,81(9):1095-1100. doi: 10.1016/S0016-2361(02)00032-7
YAO Xing-yi, WANG Wen-sen. Study on the empirical equations for calculating the fusion temperature of coal ash[J]. J Fuel Chem Technol, 1959,4(3):216-223.
WINEGARTNER E C, RHODES B T. An empirical study of the relation of chemical properties to ash fusion temperatures[J]. J Eng Power, 1975,97(3):395-403. doi: 10.1115/1.3446018
SEGGIANI M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel, 1999,78(9):1121-1125. doi: 10.1016/S0016-2361(99)00031-9
ÖZBAYOGLU G, ÖZBAYOGLU M E. A new approach for the prediction of ash fusion temperatures: A case study using Turkish lignites[J]. Fuel, 2006,85(4):545-552. doi: 10.1016/j.fuel.2004.12.020
CHEN Wen-min, JIANG Ning. Relation between the coal ash composition and fusibility[J]. Clean Coal Technol, 1996,2(2):34-37.
HUGGINS F E, KOSMACK D A, HUFFMAN G P. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams[J]. Fuel, 1981,60(7):577-584. doi: 10.1016/0016-2361(81)90157-5
GRAY V R. Prediction of ash fusion temperature from ash composition for some New Zealand coals[J]. Fuel, 1987,66(9):1230-1239. doi: 10.1016/0016-2361(87)90061-5
HURST H J, NOVAK F, PATTERSON J H. Phase diagram approach to the fluxing effect of additions of CaCO3 on Australian coal ashes[J]. Energy Fuels, 1996,10(6):1215-1219. doi: 10.1021/ef950264k
JAK E. Prediction of coal ash fusion temperatures with the FACT thermodynamic computer package[J]. Fuel, 2002,81(13):1655-1668. doi: 10.1016/S0016-2361(02)00091-1
SONG W J, TANG L H, ZHU X D, WU Y Q, ZHU Z B, KOYAMA S. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy Fuels, 2009,23(4):1990-1997. doi: 10.1021/ef800974d
VARGAS S, FRANDSEN F J, DAM-JOHANSEN K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Prog Energy Combust, 2001,27(3):237-429. doi: 10.1016/S0360-1285(00)00023-X
SONG W, SUN Y, WU Y, ZHU Z, KOYAMA S. Measurement and simulation of flow properties of coal ash slag in coal gasification[J]. AIChE J, 2011,57(3):801-818. doi: 10.1002/aic.12293
BAI J, KONG L, LI W. Prediction of slag viscosity under gasification condition[C]. The 2nd International Symposium on Gasification and its Application. Fukuoka, 2010.
UNUMA H, TAKEDA S, TSURUE T, ITO S, SAYAMA S. Studies of the fusibility of coal ash[J]. Fuel, 1986,65(11):1505-1510. doi: 10.1016/0016-2361(86)90325-X
TAI Pei-jie. Study on fusibility and fluidity of coal ash slag and hot model of membrane wall entrained-flow gasifier[D]. Shanghai: East China University of Science and Technolgy, 2010.
BAI Jin, KONG Ling-xue, LI Huai-zhu, GUO Zhen-xing, BAI Zong-qing, WEI Chi-wei, LI Wen. Adjustment in high temperature flow property of ash from Shanxi typical anthracite[J]. J Fuel Chem Technol, 2013,41(7):805-813.
ILYUSHECHKIN A Y, HLA S S, ROBERTS D G, KINAEV N N. The effect of solids and phase compositions on viscosity behaviour and Tcv of slags from Australian bituminous coals[J]. J Non-Cryst Solids, 2011,357(3):893-902. doi: 10.1016/j.jnoncrysol.2010.12.004
TOPLIS M J, DINGWELL D B. Shear viscosities of CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 liquids: Implications for the structural role of aluminium and the degree of polymerisation of synthetic and natural aluminosilicate melts[J]. Geochim Cosmochim Acta, 2004,68(24):5169-5188. doi: 10.1016/j.gca.2004.05.041
PATTERSON J H, HURST H J. Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers[J]. Fuel, 2000,79(13):1671-1678. doi: 10.1016/S0016-2361(00)00032-6
HURST H J, NOVAK F, PATTERSON J H. Viscosity measurements and empirical predictions for fluxed Australian bituminous coal ashes[J]. Fuel, 1999,78(15):1831-1840. doi: 10.1016/S0016-2361(99)00094-0
HURST H J, NOVAK F, PATTERSON J H. Viscosity measurements and empirical predictions for some model gasifier slags[J]. Fuel, 1999,78(4):439-444. doi: 10.1016/S0016-2361(98)00162-8
HURST H J, PATTERSON J H, QUINTANAR A. Viscosity measurements and empirical predictions for some model gasifier slags-Ⅱ[J]. Fuel, 2000,79(14):1797-1799. doi: 10.1016/S0016-2361(00)00043-0
WAANDERS F B, DYK J C, PRINSLOO C J V. The characterisation of three different coal samples by means of various analytical techniques[J]. Hyperfine Interact, 2009,190(1/3):109-114.
Shu'e Song , Xiaokui Wang , Yongmei Liu , Wanchun Zhu , Hong Yuan , Fuping Tian , Yunshan Bai , Yunchao Li , Li Wang , Zhongyun Wu , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026
Chengyi Xiao , Xiaoli Sun , Chen Zhang , Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069
Lisen Sun , Yongmei Hao , Zhen Huang , Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063
Pingping Zhu , Qiang Zhou , Yu Huang , Haiyang Yang , Pingsheng He , Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
Yujia Luo , Yunpeng Qi , Huiping Xing , Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
(a): high silica and alumina coal ash; (b): medium silica and alumina coal ash; (c): low silica and alumina coal ash; (d): high silica alumina ratio coal ash