Citation: ZHENG Chang-hao, WANG Qian, ZHANG Jian-sheng. Prediction model of ash fusion temperature and viscosity in coal gasification[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(5): 521-527. shu

Prediction model of ash fusion temperature and viscosity in coal gasification

  • Corresponding author: ZHANG Jian-sheng, zhang-jsh@tsinghua.edu.cn
  • Received Date: 31 December 2015
    Revised Date: 22 February 2016

    Fund Project: the National Natural Science Foundation of China 51176097

Figures(7)

  • Based on classification of silica and alumina content and silica alumina ratio in coal ash, optimized prediction models of coal ash melting point and viscosity related to ash components were built. Their relationship in a wide range of ash components was also discussed. An ash fusion temperature prediction model based on liquidus temperature from FactSage Thermodynamic software demonstrates accuracy improvement with error of less than ±40 ℃ and deviation of 25 ℃. The combination of Urbain and Roscoe model results in viscosity prediction error between prediction and experiment results within ±0.1 for relative low viscosity and ±0.2 for relative high viscosity. The results show that components classification model obtains better results than wide-covered model. Thus a better understanding of ash fusion mechanism is provided and gives reasonable guidance for blending and additives added to coal.
  • 加载中
    1. [1]

      LOLJA S A, HAXHI H, MARTIN D J. Correlations in the properties of Albanian coals[J]. Fuel, 2002,81(9):1095-1100. doi: 10.1016/S0016-2361(02)00032-7

    2. [2]

      YAO Xing-yi, WANG Wen-sen. Study on the empirical equations for calculating the fusion temperature of coal ash[J]. J Fuel Chem Technol, 1959,4(3):216-223.  

    3. [3]

      WINEGARTNER E C, RHODES B T. An empirical study of the relation of chemical properties to ash fusion temperatures[J]. J Eng Power, 1975,97(3):395-403. doi: 10.1115/1.3446018

    4. [4]

      SEGGIANI M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel, 1999,78(9):1121-1125. doi: 10.1016/S0016-2361(99)00031-9

    5. [5]

      ÖZBAYOGLU G, ÖZBAYOGLU M E. A new approach for the prediction of ash fusion temperatures: A case study using Turkish lignites[J]. Fuel, 2006,85(4):545-552. doi: 10.1016/j.fuel.2004.12.020

    6. [6]

      CHEN Wen-min, JIANG Ning. Relation between the coal ash composition and fusibility[J]. Clean Coal Technol, 1996,2(2):34-37.  

    7. [7]

      HUGGINS F E, KOSMACK D A, HUFFMAN G P. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams[J]. Fuel, 1981,60(7):577-584. doi: 10.1016/0016-2361(81)90157-5

    8. [8]

      GRAY V R. Prediction of ash fusion temperature from ash composition for some New Zealand coals[J]. Fuel, 1987,66(9):1230-1239. doi: 10.1016/0016-2361(87)90061-5

    9. [9]

      HURST H J, NOVAK F, PATTERSON J H. Phase diagram approach to the fluxing effect of additions of CaCO3 on Australian coal ashes[J]. Energy Fuels, 1996,10(6):1215-1219. doi: 10.1021/ef950264k

    10. [10]

      JAK E. Prediction of coal ash fusion temperatures with the FACT thermodynamic computer package[J]. Fuel, 2002,81(13):1655-1668. doi: 10.1016/S0016-2361(02)00091-1

    11. [11]

      SONG W J, TANG L H, ZHU X D, WU Y Q, ZHU Z B, KOYAMA S. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy Fuels, 2009,23(4):1990-1997. doi: 10.1021/ef800974d

    12. [12]

      VARGAS S, FRANDSEN F J, DAM-JOHANSEN K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Prog Energy Combust, 2001,27(3):237-429. doi: 10.1016/S0360-1285(00)00023-X

    13. [13]

      SONG W, SUN Y, WU Y, ZHU Z, KOYAMA S. Measurement and simulation of flow properties of coal ash slag in coal gasification[J]. AIChE J, 2011,57(3):801-818. doi: 10.1002/aic.12293

    14. [14]

      BAI J, KONG L, LI W. Prediction of slag viscosity under gasification condition[C]. The 2nd International Symposium on Gasification and its Application. Fukuoka, 2010.

    15. [15]

      UNUMA H, TAKEDA S, TSURUE T, ITO S, SAYAMA S. Studies of the fusibility of coal ash[J]. Fuel, 1986,65(11):1505-1510. doi: 10.1016/0016-2361(86)90325-X

    16. [16]

      TAI Pei-jie. Study on fusibility and fluidity of coal ash slag and hot model of membrane wall entrained-flow gasifier[D]. Shanghai: East China University of Science and Technolgy, 2010.

    17. [17]

      BAI Jin, KONG Ling-xue, LI Huai-zhu, GUO Zhen-xing, BAI Zong-qing, WEI Chi-wei, LI Wen. Adjustment in high temperature flow property of ash from Shanxi typical anthracite[J]. J Fuel Chem Technol, 2013,41(7):805-813.  

    18. [18]

      ILYUSHECHKIN A Y, HLA S S, ROBERTS D G, KINAEV N N. The effect of solids and phase compositions on viscosity behaviour and Tcv of slags from Australian bituminous coals[J]. J Non-Cryst Solids, 2011,357(3):893-902. doi: 10.1016/j.jnoncrysol.2010.12.004

    19. [19]

      TOPLIS M J, DINGWELL D B. Shear viscosities of CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 liquids: Implications for the structural role of aluminium and the degree of polymerisation of synthetic and natural aluminosilicate melts[J]. Geochim Cosmochim Acta, 2004,68(24):5169-5188. doi: 10.1016/j.gca.2004.05.041

    20. [20]

      PATTERSON J H, HURST H J. Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers[J]. Fuel, 2000,79(13):1671-1678. doi: 10.1016/S0016-2361(00)00032-6

    21. [21]

      HURST H J, NOVAK F, PATTERSON J H. Viscosity measurements and empirical predictions for fluxed Australian bituminous coal ashes[J]. Fuel, 1999,78(15):1831-1840. doi: 10.1016/S0016-2361(99)00094-0

    22. [22]

      HURST H J, NOVAK F, PATTERSON J H. Viscosity measurements and empirical predictions for some model gasifier slags[J]. Fuel, 1999,78(4):439-444. doi: 10.1016/S0016-2361(98)00162-8

    23. [23]

      HURST H J, PATTERSON J H, QUINTANAR A. Viscosity measurements and empirical predictions for some model gasifier slags-Ⅱ[J]. Fuel, 2000,79(14):1797-1799. doi: 10.1016/S0016-2361(00)00043-0

    24. [24]

      WAANDERS F B, DYK J C, PRINSLOO C J V. The characterisation of three different coal samples by means of various analytical techniques[J]. Hyperfine Interact, 2009,190(1/3):109-114.  

  • 加载中
    1. [1]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    2. [2]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    3. [3]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    4. [4]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    9. [9]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    10. [10]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    11. [11]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    12. [12]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    13. [13]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    14. [14]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

Metrics
  • PDF Downloads(10)
  • Abstract views(2611)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return