Hg0 removal by palygorskite (PG) supported MnOx catalyst
- Corresponding author: QIN Wei, laviniaqin@163.com ZHANG Jian-li, zhangjl@nxu.edu.cn
Citation:
WANG Jun-wei, XU Can, QIN Wei, ZHANG Jian-li, ZHANG Xian-long, DONG Yan-jie, CUI Xiao-feng. Hg0 removal by palygorskite (PG) supported MnOx catalyst[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(12): 1442-1451.
PIRRONE N, CINNIRELLA S, FENG X, FINKELMAN R B, FRIEDLI H R, LEANER J, MASON R, MUKHERJEE A B, STRACHER G B, STREETS D G, TELMER K. Global mercury emissions to the atmosphere from anthropogenic and natural sources[J]. Atmos Chem Phys, 2010,10(201):5951-5964.
DRANGA B A, LAZAR L, KOESER H. Oxidation catalysts for elemental mercury in flue gases-A review[J]. Catal, 2012,2(1):139-170.
CHENG H Y, ZHANG W W, WANG Y C, LIU J H. Graphene oxide as a stationary phase for speciation of inorganic and organic species of mercury, arsenic and selenium using HPLC with ICP-MS detection[J]. Microchim Acta, 2018,185(9):1-8.
ZHU C Y, TIAN H Z, CHENG K, LIU K Y, WANG K, HUA S B, GAO J J, ZHOU J R. Potentials of whole process control of heavy metals emissions from coal-fired power plants in China[J]. J Clean Prod, 2016,114(15):343-351.
ZHAO Y, ZHONG H, ZHANG J, NIELSEN C P. Evaluating the effects of China's pollution controlson on inter-annual trends and uncertainties of atmospheric mercury emissions[J]. Atmos Chem Phys, 2015,15(8):4317-4337.
BENJARAM M, NAGA D, THALLADA V K, BHARGAVA S K. Abatement of gas-phase mercury-recent Developments[J]. Catal Rev Sci Eng, 2012,54(3):344-398.
HUANG T F, DUAN Y F, LUO Z K, ZHAO S L, GENG X Z, XU Y F, HUANG Y J, WEI H Q, REN S J, WANG H, GU X B. Influence of flue gas conditions on mercury removal by activated carbon injection in a pilot-scale circulating fluidized bed combustion system[J]. Ind Eng Chem Res, 2019,58(34):15553-15561.
LIU H, CHANG L, LIU W J, XIONG Z, ZHAO Y C, ZHANG J Y. Advances in mercury removal from coal-fired flue gas by mineral adsorbents[J]. Chem Eng J, 2020,379122263.
DING F, ZHAO Y C, MI L L, LI H L, LI Y, ZHANG J Y. Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents[J]. Ind Eng Chem Res, 2012,51(7):3039-3047.
XING Shuai, JIANG Hong, XIONG Chun-rong, MA Yan-ping. Research of silicon-based composite oxides supported on oxided cocount shell active carbon as denitration catalyst at low temperature[J]. J Mol Catal, 2016,30(2):140-150.
ZHANG Heng-jian. Investigation of cylindrical palygorskite-activated carbon supported manganese oxides catalysts for low-temperature selective catalytic reduction(SCR)of NO by NH3[D]. Hefei: Hefei University of Technology, 2014.
ZhANG Xian-long, XIE Cheng-hua, GUO Yong, WU Xue-ping, WANG Jun-wei. Preparation and performance of honeycomb MnOx/PG-CC catalysts for low temperature NO removal by SCR[J]. Environ Chem, 2015,4:614-626.
LIU Fang-fang, ZHANG Jun-ying, ZHAO Yong-chun, ZHENG Chu-guang. Mercury Removal from Flue Gas by Metal Oxide-Loaded Attapulgite Mineral Sorbent[J]. Combust Sci Technol, 2014,20(6):553-557.
LIU H, YANG Y P, TIAN C, ZHAO Y C, ZHANG J Y. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents[J]. Appl Clay Sci, 2017,147:36-43.
CIMINO S, MANGONE C, SCALA F. Combined mercury removal and low-temperature NH3-SCR OF NO with MnOx/TiO2 sorbents/catalysts[J]. Combust Sci Technol, 2018,190(8):1-12.
GAO L, LI C T, LI S H, ZHANG W, DU X Y, HUANG L, ZHU Y C, ZHAI Y B, ZENG G M. Superior performance and resistance to SO2 and H2O over CoOx-modified MnOx/biomass activated carbons for simultaneous Hg0 and NO removal[J]. Chem Eng J, 2019,371:781-795.
LI Yang, LIU Bing, YANG He, YANG Da-wei, HU Hao-quan. Removal of elemental mercury (Hg0) from simulated flue gas over MnOx -TiO2 sorbents[J]. J Fuel Chem Technol, 2020,48(5):513-524.
GUO Hui-bin, LIU Hai-gang, TANG Hong-xue. Study on mercury removal performance of WO3-MnOx/TiO2-ZrO2 catalysts[J]. Environ pollut control, 2019,41(6):694-698.
BAI Guo-liang, TAO Hai-bing, CAI Si-min, QIN Wei, MAO De-qi, WANG Jun-wei, DONG Yan-jie, ZHANG Xian-long. Removal of vapor-phase Hg0 over a V2O5/PG catalyst[J]. Acta Sci Circumst, 2019,39(7):2369-2376.
DONG L, HUANG Y J, CHEN H, LIU L Q, LIU C Q, XU L G, ZHA J R, WANG Y X, LIU H. Magnetic γ-Fe2O3-loaded attapulgite sorbent for Hg~0 removal in coal-fired flue gas[J]. Energy Fuels, 2019,33:7522-7533.
CUI H, QIAN Y, LI Q, ZHANG W, ZHAI J P. Adsorption of aqueous Hg(Ⅱ) by a polyaniline/attapulgite composite[J]. Chem Eng J, 2012,211-212:216-223.
ZHOU Z J, LIU X W, XU J, CAO X K, ZHU X B. Elemental mercury removal over a novel starch-modified MnOx/bentonite composite[J]. Fuel Process Technol, 2019,187:16-20.
LI H L, YU C L, LI Y, W U, ZHANG J Y. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B: Environ, 2012,12(111-112):381-388.
ZUO Hai-qing, XU Dong-yao, DAN Hai-jun, LIU Xiang-hui, YANG Yong-li, LIU Wei, MA Yan. Research progress in attapulgite absorbents for mercury removal from flue gases[J]. Chem Ind/Eng Prog, 2017,36(10):3533-3539.
YANG S J, GUO Y F, YAN N Q, WU D Q, HE H P, XIE J K, QU Z, JIA J P. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B: Environ, 2011,101(3/4):698-708.
WANG Jun-wei, CHEN Pei, LIU Rui-qing, QIN Wei, DU Rong-bin, LIU Tao. Hg0 removal by a fly ash-supported Fe2O3 catalyst[J]. Acta Sci Circumst, 2014,34(12):3152-3157.
HUANG Zhang-gen, ZHU Zhen-ping, LIU Zhen-yu. Effect of water on V2O5/AC catalyst for NO reduction by NH3 at lower temperature[J]. Chin J Catal, 2001,22(6):532-536.
GAO Lei. An experimental and theoretical rescarch on simultaneous removal of NO and Hg0 from simulated coal-fired flue gas over modified activated coke(carbon)at low temperature[D]. Changsha: Hunan University 2019.
WAN Q, DUAN L, HE K B, LI J H. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal- fired flue gas[J]. Chem Eng J, 2011,170(2/3):512-517.
XIE Ya-ting. Experimental study on removal of mercury from coal-fired flue gas and its sulfur tolerance characteristic by Mn, Ce modified γ-Al2O3 catalyst[D]. Wuhan: Wuhan University 2018.
ZHOU Meng-li. The experimental study on simultaneous removal of NO and mercury over ferromanganese ore at low temperature[D]. Wuhan: Huazhong University of Science and Technologt, 2018.
YANG Jian-ping, ZHAO Yong-chun, ZHANG Jun-ying, ZHENG Chu-guang. Research process on mercury oxidation and capture with fly ash of coal-fired power plant[J]. J Chin Society Power Eng, 2014,34(5):337-345.
LIU M, LI C T, ZENG Q, DU X Y, GAO L, LI S H, ZHAI Y B. Study on removal of elemental mercury over MoO3-CeO2/cylindrical activated coke in the presence of SO2 by Hg-temperature-programmed desorption[J]. Chem Eng J, 2019,371:666-678.
CHEN Li, LIU Sheng-yu, LV Wei-yang. Effect of manganese loading on zero valent mercury adsorption on magnetic iron oxides[J]. Environ Eng, 2019,37(9):131-137.
AN Dong-hai, HAN Xiao-lin, CHENG Xing-xing, ZHOU Bin-xuan, ZHENG Ying, DONG Yong. Effect mechanisms of different flue gas on adsorption of mercury by powder activated coke[J]. CIESC J, 2019,70(4):1575-1582.
ZHU L, LIU C L, WEN X D, LI Y W, JIAO H J. Molecular or dissociative adsorption of water on clean and oxygen pre-covered Ni (111) surfaces[J]. Catal Sci Technol, 2019,9(1):199-212.
HUANG Z F, SONG J J, DU Y H, XI S B, DOU S, JEAN M V N, WANG C, XU Z C, WANG X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts[J]. Nat Energy, 2019,4:329-338.
ZHAO L, WU Y W, HAN J, LU Q, YANG Y P, ZHANG L B. Mechanism of mercury adsorption and oxidation by oxygen over the CeO2 (111) surface: A DFT study[J]. Mater, 2018,11(4)485.
WANG Z, LIU J, YANG Y J, MIAO S, SHEN F H. Effect mechanism of H2S on elemental mercury removal using MnO2 sorbent during coal gasification[J]. Energy Fuels, 2017,32(4):4453-4460.
LU X N, SONG C Y, JIA S H, TONG Z S, TANG X L, TENG Y X. Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2-graphene[J]. Chem Eng J, 2015,260:776-784.
YAO T, DUAN Y F, BISSON T M, GUPTA R, PUDASAINEE D, ZHU C, XU Z H. Inherent thermal regeneration performance of different MnO2 crystallographic structures for mercury removal[J]. J Hazard Mater, 2019,374(15):267-275.
RUMAYOR M, DÍAZ-SOMOANO M, LÓPEZ-ANTÓN M A, OCHOA-GONZÁLEZ R, MARTÍNEZ-TARAZONA M R. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems[J]. Fuel, 2015,148:98-103.
Yutao Lu , Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016