Citation: ZHOU Shang-kun, WANG Meng, TAN Hou-zhang, XIONG Xiao-he, LÜ Zhao-min, YANG Fu-xin. Effect of vermiculite on the slagging characteristics of high sodium and high calcium Zhundong coal[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(4): 419-427. shu

Effect of vermiculite on the slagging characteristics of high sodium and high calcium Zhundong coal

  • Corresponding author: TAN Hou-zhang, hzt@mail.xjtu.edu.cn
  • Received Date: 18 December 2018
    Revised Date: 22 February 2019

    Fund Project: the National Key Research and Development Program of China 2018YFB0604203The project was supported by the National Key Research and Development Program of China(2018YFB0604203)

Figures(8)

  • The effect of vermiculite on the slagging characteristics of high-sodium and high-calcium Zhundong coal was studied by a drop-tube furnace and with ash fusion tester. The results show that with the increase of the amount of vermiculite blended, the ash melting point temperature first decreases and then increases. When the ratio of blending is 6%, the ash fusion point temperature is the lowest. The higher the blending ratio is, the more obvious the improvement of the slagging condition of Zhundong coal is. When the ratio of blending is 4%, the slag sample becomes loose and porous, the texture turns to be brittle, and the adhesion between the slag sample and the deposition probe is weak, being easy to be removed by soot blowing. It is recommended that the amount of vermiculite blended should be 4%. The original mineral in coal ash is mainly composed of quartz, gehlenite and low fusion point minerals of pyroxene. After blending vermiculite, the omphacite, sodium-containing minerals, is converted into pargasite, and the iron-bearing minerals such as augite and hematite are converted into forsterite ferroan, and the minerals in the slag sample are mainly forsterite, which has a high fusion point. Sodium can be captured by vermiculite. With the sampling temperature decreasing and the vermiculite blending ratio increasing, the effect of sodium capture becomes more and more obvious.
  • 加载中
    1. [1]

      YAN Lu-guang, XIA Xun-cheng, LYU Shao-qin, WU Jia-chun, LIN Min, HUANG Chang-gang. Great promotion of development of large scale integrative energy base in Xinjiang[J]. Adv Technol Elect Eng Energy, 2011,30(1):1-7. doi: 10.3969/j.issn.1003-3076.2011.01.001

    2. [2]

      SONG Han-jiang. Study of comprehensive utilization problem of Xinjiang Zhundong coal[J]. West China Expor Eng, 2008,20(9):149-151. doi: 10.3969/j.issn.1004-5716.2008.09.053

    3. [3]

      YANG Zhong-can, LIU Jia-li, YAO Wei. Fouling index of Zhundong coal ash[J]. Clean Coal Technol, 2013,19(2):81-84.  

    4. [4]

      ZHANG Shou-yu, CHEN Chuan, SHI Da-zhong, LYU Jun-fu, WANG Jian, GUO Xi, DONG Ai-xia, XIONG Shao-wu. Situation of combustion utilization of high sodium coal[J]. Proc CSEE, 2013,33(5):1-12, 17.  

    5. [5]

      DONG Ming-gang. Influence of high-sodium coal upon slagging, contamination, and corrosion on the heating surface of boilers[J]. Therm Power Gen, 2008,37(9):35-39. doi: 10.3969/j.issn.1002-3364.2008.09.010

    6. [6]

      HAO Z, ZHOU B, LI L, ZHANG H. Experimental measurement of the effective thermal conductivity of ash deposit for high sodium coal (Zhun Dong coal) in a 300 KW test furnace[J]. Energy Fuels, 2013,27(11):7008-7022. doi: 10.1021/ef4012017

    7. [7]

      LI G, WANG CA, YAN Y, JIN X, LIU Y, CHE D. Release and transformation of sodium during combustion of Zhundong coals[J]. J Energy Inst, 2016,89(1):48-56. doi: 10.1016/j.joei.2015.01.011

    8. [8]

      SHEN Ming-ke, QIU Kun-zan, HUANG Zhen-yu, WANG Zhi-hua, LIU Jian-zhong. Influence of kaolin on sodium retention and ash fusion characteristic during combustion of Zhundong coal[J]. J Fuel Chem Technol, 2015,43(9):1044-1051. doi: 10.3969/j.issn.0253-2409.2015.09.004 

    9. [9]

      ZHANG Li-meng, DONG Xin-guang, LIU Ke, TAN Hou-zhang, WANG Xue-bin, WEI Bo. Effect of kaolin on ash slagging and mineral conversion of Zhundong coal[J]. J Fuel Chem Technol, 2015,43(10):1176-1181. doi: 10.3969/j.issn.0253-2409.2015.10.004 

    10. [10]

      WANG Xue-bin, WEI Bo, ZHANG Li-meng, TAN Hou-zhang, XU Tong-mo. Effect of temperature and silicon additives on occurrence and transformation characteristics of alkali metal in Zhundong coal[J]. Therm Power Gen, 2014,43(8):84-88. doi: 10.3969/j.issn.1002-3364.2014.08.084

    11. [11]

      MA Shang-wen, LIU Xia, XU Jie, A Geng-xiong. The effect of SiO2 on fusion temperature of coal ash[J]. Guangdong Chem Ind, 2013,40(13):81-82. doi: 10.3969/j.issn.1007-1865.2013.13.039

    12. [12]

      WANG Yun-gang, ZHAO Qin-xin, MA Hai-dong, JIANG Wei-wei. Experimental study on ash fusion characteristics of Zhundong coal[J]. J Chin Soc Power Eng, 2013,33(11):841-846.  

    13. [13]

      ZHANG Xue-hui, WEI Bo, MA Rui, RUAN Ren-hui, TAN Hou-zhang. The evaluation of fusion characteristics on the high alkali coal slagging inhibitor by modified fly ash from Zhundong area[J]. Therm Power Gen, 2019,48(1):43-48.  

    14. [14]

      WEI Bo, WANG Xue-bin, ZHANG Li-meng, TAN Hou-zhang, XU Tong-mo. Experimental study on effect of sodium migration and ash fusion of Zhundong coal[J]. Electr Pow, 2014,47(10):98-102. doi: 10.3969/j.issn.1007-3361.2014.10.037

    15. [15]

      YAO Y, JIN J, LIU D, WANG Y, KOU X, LIN Y. Evaluation of vermiculite in reducing ash deposition during the combustion of high-calcium and high-sodium Zhundong coal in a drop-tube furnace[J]. Energy Fuels, 2016,30(4):3488-3494. doi: 10.1021/acs.energyfuels.6b00078

    16. [16]

      GAO Shan-shan, JIN Jing, LIU Dun-yu, WANG Yong-zhen, YAO Yu-xiang, KOU Xue-sen. Effect of vermiculite composite additives on the anti-slagging behavior during combustion of Zhundong coal[J]. Chem Ind Eng Prog, 2017,36(9):3280-3286.  

    17. [17]

      FU Zi-wen, WANG Chang-an, CHE De-fu, WENG Qing-song. Experimental study on the effect of ashing temperature on physicochemical properties of Zhundong coal ashes[J]. J Eng Thermophys, 2014,35(3):609-613.  

  • 加载中
    1. [1]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    2. [2]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    3. [3]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    4. [4]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    9. [9]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    10. [10]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    11. [11]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    12. [12]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    13. [13]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    14. [14]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    17. [17]

      Tianyang Yu Hao Wei . “Illness Enters through the Mouth”: A Brief Overview of Toxic Chemical Substances in Common Foods. University Chemistry, 2025, 40(7): 225-231. doi: 10.12461/PKU.DXHX202409083

    18. [18]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    19. [19]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    20. [20]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

Metrics
  • PDF Downloads(10)
  • Abstract views(1961)
  • HTML views(384)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return