Citation: YUAN Shan-liang, LAN Hai, BO Qi-fei, ZHANG Biao, XIAO Xi, JIANG Yi. Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(2): 243-248. shu

Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst

  • Corresponding author: JIANG Yi, yjiang@cioc.ac.cn
  • Received Date: 10 November 2016
    Revised Date: 23 December 2016

Figures(4)

  • CuMnCe/TiO2-Al2O3 catalysts with different TiO2 contents were prepared by the co-impregnation method and characterized by BET, XRD, XPS and H2-TPR techniques.The catalytic performance in methane deoxidation reaction were investigated using CGK-5A fixed bed reactor.Results showed that doping some TiO2 in the Al2O3 support has no effect on the crystalline structure of the active ingredient.But it can effectively improve Al2O3 support sintering resistance and thermal stability, furthermore, it increases content of Ce3+/(Ce3++Ce4+) in the CuMnCe/Al2O3 catalysts, which improves the mobility of oxygen.Besides, the content of adsorbed oxygen Osur/(Osur+Olatt) and reducible species in the catalyst surface are increased.Thus, effectively, doping some TiO2 into the Al2O3 support improved the catalytic activity of deoxygenation catalyst for methane combustion.CuMnCe/4% TiO2-Al2O3 exhibited optimum catalytic activity and oxygen conversion rate reached 100% at 387℃.
  • 加载中
    1. [1]

      WU Jian-feng, SUN Zhao-hu, GONG Mao-qiong. Security technology of methane recovery from coalbed gas with oxygen[J]. Nat Gas Ind, 2009,29(2):113-116.

    2. [2]

      NIE Li-hong, XU Shao-ping, SU Yan-min, LIU Shu-qin. Progress of recovery of low concentration coal bed methane[J]. Chem Ind Eng Prog, 2008,27(10):1505-1511.

    3. [3]

      (WANG Shu-dong, YUAN Zhong-shan, WANG Sheng, ZHANG Chun-xi, NI Chang-jun. A preparation method and application of coal bed methane deoxygenation catalyst:CN, 101664679B[P]. 2012-09-12.)

    4. [4]

      YUAN Shan-liang, BO Qi-fei, JIANG Yi. Reasearch advances in coalbed methane (CBM) deoxygeneration by catalytic combustion[J]. Nat Gas Chem Ind, 2016,41(5):73-77.

    5. [5]

      OH S H, MITCHELL P J. Effects of rhodium addition on methane oxidation behavior of alumina-supported noble metal catalysts[J]. Appl Phys B, 1994,5(1/2):165-179.

    6. [6]

      BURCH R, LOADER P K. Investigation of Pt/Al2O3 and Pd/Al2O3 catalysts for the combustion of methane at low concentrations[J]. Appl Phys B, 1994,5(1):149-164.

    7. [7]

      LYUBOVSKY M, PFEFFERLE L. Methane combustion over the α, -alumina supported Pd catalyst:Activity of the mixed Pd/PdO state[J]. Appl Phys A, 1998,179(1):107-119.

    8. [8]

      HAOJIE G, ZHONGQING Y, LI Z, JINGYU R, YANRONG C. Experimental and kinetic study of methane combustion with water over copper catalyst at low-temperature[J]. Energy Convers Manage, 2015,103:244-250. doi: 10.1016/j.enconman.2015.06.076

    9. [9]

      HAOJIE G, ZHONGQING Y, LI Z, JINGYU R, YUNFEI Y, MINGNV G. Effects of O2/CH4 ratio on methane catalytic combustion over Cu/γ, -Al2O3 particles[J]. Int J Hydrogen Energy, 2016,41(40):18282-18290. doi: 10.1016/j.ijhydene.2016.08.134

    10. [10]

      TANG Guo-qi, ZHANG Chun-fu, SUN Chang-shan, YAN Bin, YANG Guo-xiang, DAI Wei, TIAN Bao-liang. Research progress of γ, -alumina support[J]. Chem Ind Eng Prog, 2011,30(8):1756-1765.

    11. [11]

      MATAM S K, AGUIRRE M H, WEIDENKAFF A, FERRI D. Revisiting the problem of active sites for methane combustion on Pd/Al2O3 by operando XANES in a lab-scale fixed-bed reactor[J]. J Phys Chem C, 2010,114(20):9439-9443. doi: 10.1021/jp1019697

    12. [12]

      BRAGA V S, DIAS J A, DIAS S C L, DE MACEDO J L. Catalyst materials based on Nb2O5 supported on SiO2-Al2O3:Preparation and structural characterization[J]. Chem Mater, 2005,17(3):690-695. doi: 10.1021/cm048673u

    13. [13]

      ESCOBAR J, ANTONIO DE LOS REYES J, VIVEROS T. Nickel on TiO2-modified Al2O3 sol-gel oxides:Effect of synthesis parameters on the supported phase properties[J]. Appl Phys A, 2003,253(1):151-163.

    14. [14]

      WANG L, HUANG M, LI B, DONG L, JIN G, GAO J, MA J, LIU T. Enhanced hydrothermal stability and oxygen storage capacity of La3+ doped CeO2-γ, -Al2O3 intergrowth mixed oxides[J]. Ceram Int, 2015,41(10, Part A):12988-12955. doi: 10.1016/j.ceramint.2015.06.142

    15. [15]

      RODSEANGLUNG T, RATANA T, PHONGAKSORN M, TUNGKAMANIA S. Effect of TiO2 Incorporated with Al2O3 on the hydrodeoxygenation and hydrodenitrogenation CoMo sulfide catalysts[J]. Energy Procedia, 2015,79:378-384. doi: 10.1016/j.egypro.2015.11.506

    16. [16]

      LARTIGUE KORINEK S, LEGROS C, CARRY C, HERBST F. Titanium effect on phase transformation and sintering behavior of transition alumina[J]. J Eur Ceram Soc, 2006,26(12):2219-2230. doi: 10.1016/j.jeurceramsoc.2005.04.006

    17. [17]

      REDDY B M, KHAN A, YAMADA Y, KOBAYASHI T, LORIDANT S, VOLTA J C. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques[J]. J Phys Chem B, 2003,107(22):5162-5167. doi: 10.1021/jp0344601

    18. [18]

      WANG H, CHEN X, GAO S, WU Z, LIU Y, WENG X. Deactivation mechanism of Ce/TiO2 selective catalytic reduction catalysts by the loading of sodium and calcium salts[J]. Catal Sci Technol, 2013,3(3):715-722. doi: 10.1039/C2CY20568H

    19. [19]

      LIOTTA L F, DI CARLO G, PANTALEO G, VENEZIA A M, DEGANELLO G. Co3O4/CeO2 composite oxides for methane emissions abatement:Relationship between Co3O4-CeO2 interaction and catalytic activity[J]. Appl Phys B, 2006,66(3/4):217-227.

    20. [20]

      LU H, KONG X, HUANG H, ZHOU Y, CHEN Y. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. J Environ Sci, 2015,32:102-107. doi: 10.1016/j.jes.2014.11.015

    21. [21]

      TANG X, XU Y, SHEN W. Promoting effect of copper on the catalytic activity of MnOx, -CeO2 mixed oxide for complete oxidation of benzene[J]. Chem Eng J, 2008,144(2):175-180. doi: 10.1016/j.cej.2008.01.016

  • 加载中
    1. [1]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    3. [3]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    4. [4]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    5. [5]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    6. [6]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    7. [7]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    8. [8]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    15. [15]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

Metrics
  • PDF Downloads(1)
  • Abstract views(771)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return