Citation: Xu Min, Chai Yahong, Yao Li. Progress in Organic Phase Syntheses and Bioapplication of High-Performance Magnetic Nanoparticles[J]. Chemistry, ;2018, 81(10): 867-879. shu

Progress in Organic Phase Syntheses and Bioapplication of High-Performance Magnetic Nanoparticles

  • Corresponding author: Yao Li, yaoli@iccas.ac.cn
  • Received Date: 8 June 2018
    Accepted Date: 30 July 2018

Figures(6)

  • The syntheses of magnetic nanoparticles (MNPs) have been intensively developed for both fundamental research and technological applications. Compared to the bulk magnet, MNPs exhibit unique magnetic property, which enables the modulation by systematic nanoscale engineering. In this review, the fundamental features and the syntheses of various MNPs, including magnetic metal, metallic alloy, metal oxide, and multifunctional MNPs were introduced. Especially the organic phase syntheses of MNPs with precise control over their sizes, shapes, compositions, and structures were focused on. Finally the applications of various MNPs in biomedicine were discussed.
  • 加载中
    1. [1]

      L Wu, A Mendoza-Garcia, Q Li et al. Chem. Rev., 2016, 116: 10473~10512. 

    2. [2]

      D Ho, X Sun, S Sun. Acc. Chem. Res., 2011, 44: 875~882. 

    3. [3]

      L H Reddy, J L Arias, J Nicolas et al. Chem. Rev., 2012, 112: 5818~5878. 

    4. [4]

      Y Lu, Y J Xu, G B Zhang et al. Nat.Biomed. Eng., 2017, 1: 637~643. 

    5. [5]

      X R Song, X Wang, S X Yu et al. Adv. Mater., 2015, 27: 3285~3291. 

    6. [6]

      Z Q Zhang, S C Song. Biomaterials, 2016, 106: 13~23. 

    7. [7]

      R Skomski, J M D Coey. Permanent Magnetism, 1999.

    8. [8]

      L Néel. C. R. Acad. Sci., 1949, 228: 664~666.

    9. [9]

      C M Sorensen. Magnetism, in Nanoscale Materials in Chemistry, 2001.

    10. [10]

      Y Soumare, C Garcia, T Maurer et al. Adv. Funct. Mater., 2009, 19: 1971~1977. 

    11. [11]

      G Cherubini, R D Cideciyan, L Dellmann et al. IEEE Trans. Magn., 2011, 47: 137~147. 

    12. [12]

      J H Lee, Y M Huh, Y Jun et al. Nat. Med., 2007, 13: 95~99. 

    13. [13]

      J T Jang, H Nah, J H Lee et al. Angew. Chem. Int. Ed., 2009, 48: 1234~1238. 

    14. [14]

      V K LaMer, R H Dinegar. J. Am. Chem. Soc., 1950, 72: 4847~4854. 

    15. [15]

      J Park, J Joo, S G Kwon et al. Angew. Chem. Int. Ed., 2007, 46: 4630~4660. 

    16. [16]

      S Peng, C Wang, J Xie et al. J. Am. Chem. Soc., 2006, 128: 10676~10677. 

    17. [17]

      C T Black, C B Murray, R L Sandstrom et al. Science, 2000, 290: 1131~1134. 

    18. [18]

      J Park, E Kang, S U Son et al. Adv. Mater., 2005, 17: 429~434. 

    19. [19]

      S H Sun, H Zeng. J. Am. Chem. Soc., 2002, 124: 8204~8205. 

    20. [20]

      D Farrell, S A Majetich, J P Wilcoxon. J. Phys. Chem. B, 2003, 107: 11022~11030. 

    21. [21]

      L M Lacroix, N F Huls, D Ho et al. Nano Lett., 2011, 11: 1641~1645. 

    22. [22]

      A Meffre, B Mehdaoui, V Kelsen et al. Nano Lett., 2012, 12: 4722~4728. 

    23. [23]

      F Dumestre, B Chaudret, C Amiens et al. Science, 2004, 303: 821~823. 

    24. [24]

      L M Lacroix, S Lachaize, A Falqui et al. J. Am. Chem. Soc., 2009, 131: 549~557. 

    25. [25]

      C B Murray, S H Sun, W Gaschler et al. IBM J. Res. Dev., 2001, 45: 47~56. 

    26. [26]

      S Peng, J Xie, S H Sun. J. Solid State Chem., 2008, 181: 1560~1564. 

    27. [27]

      C Petit, A Taleb, M P Pileni. J. Phys. Chem. B, 1999, 103: 1805~1810. 

    28. [28]

      Z J Yang, M Cavalier, M Walls et al. J. Phys. Chem. C, 2012, 116: 15723~15730. 

    29. [29]

      D P Dinega, M G Bawendi. Angew. Chem. Int. Ed., 1999, 38: 1788~1791. 

    30. [30]

      S H Sun, C B Murray. J. Appl. Phys., 1999, 85: 4325~4330. 

    31. [31]

      O Metin, V Mazumder, S Ozkar et al. J. Am. Chem. Soc., 2010, 132: 1468~1469. 

    32. [32]

      M Cargnello, V V T Doan-Nguyen, T R Gordon et al. Science, 2013, 341: 771~773. 

    33. [33]

      N Cordente, M Respaud, F Senocq et al. Nano Lett., 2001, 1: 565~568. 

    34. [34]

      A P LaGrow, B Ingham, S Cheong et al. J. Am. Chem. Soc., 2012, 134: 855~858. 

    35. [35]

      A Hutten, D Sudfeld, I Ennen et al. J. Magn. Magn. Mater., 2005, 293: 93~101. 

    36. [36]

      C Desvaux, C Amiens, P Fejes et al. Nat. Mater., 2005, 4: 750~753. 

    37. [37]

      G S Chaubey, C Barcena, N Poudyal et al. J. Am. Chem. Soc., 2007, 129: 7214~7215. 

    38. [38]

      C Wang, S Peng, L M Lacroix et al. Nano Res., 2009, 2: 380~385. 

    39. [39]

      S H Sun, C B Murray, D Weller et al. Science, 2000, 287: 1989~1992. 

    40. [40]

      M Chen, J P Liu, S H Sun. J. Am. Chem. Soc., 2004, 126: 8394~8395. 

    41. [41]

      L E M Howard, H L Nguyen, S R Giblin et al. J. Am. Chem. Soc., 2005, 127: 10140~10141. 

    42. [42]

      S H Sun, S Anders, T Thomson et al. J. Phys. Chem. B, 2003, 107: 5419~5425.

    43. [43]

      E V Shevchenko, D V Talapin, A L Rogach et al. J. Am. Chem. Soc., 2002, 124: 11480~11485. 

    44. [44]

      J I Park, J Cheon. J. Am. Chem. Soc., 2001, 123: 5743~5746. 

    45. [45]

      W R Lee, M G Kim, J R Choi et al. J. Am. Chem. Soc., 2005, 127: 16090~16097. 

    46. [46]

      M Chen, J Kim, J P Liu et al. J. Am. Chem. Soc., 2006, 128: 7132~7133. 

    47. [47]

      Y L Hou, H Kondoh, T Kogure et al. Chem. Mater., 2004, 16: 5149~5152. 

    48. [48]

      Y S Yu, K W Sun, Y Tian et al. Nano Lett., 2013, 13: 4975~4979. 

    49. [49]

      G Jiang, H Zhu, X Zhang et al. ACS Nano, 2015, 9: 11014~11022. 

    50. [50]

      K Ono, Y Kakefuda, R Okuda et al. J. Appl. Phys., 2002, 91: 8480~8482. 

    51. [51]

      H W Gu, B Xu, J C Rao et al. J. Appl. Phys., 2003, 93: 7589~7591. 

    52. [52]

      Y L Hou, Z C Xu, S Peng et al. Adv. Mater., 2007, 19: 3349~3352. 

    53. [53]

      G S Chaubey, N Poudyal, Y Z Liu et al. J. Alloys Compd., 2011, 509: 2132~2136. 

    54. [54]

      S H Sun, H Zeng, D B Robinson et al. J. Am. Chem. Soc., 2004, 126: 273~279. 

    55. [55]

      H Zeng, P M Rice, S X Wang et al. J. Am. Chem. Soc., 2004, 126: 11458~11459. 

    56. [56]

      Z C Xu, C M Shen, Y L Hou et al. Chem. Mater., 2009, 21: 1778~1780. 

    57. [57]

      C Moya, O Iglesias-Freire, N Perez et al. Nanoscale, 2015, 7: 8110~8114. 

    58. [58]

      T Hyeon, S S Lee, J Park et al. J. Am. Chem. Soc., 2001, 123: 12798~12801. 

    59. [59]

      N Z Bao, L M Shen, Y H Wang et al. J. Am. Chem. Soc., 2007, 129: 12374~12375. 

    60. [60]

      Z Zhao, Z Zhou, J Bao et al. Nat Commun., 2013, 4: 2266. 

    61. [61]

      I S Lee, N Lee, J Park et al. J. Am. Chem. Soc., 2006, 128: 10658~10659. 

    62. [62]

      Y D Yin, R M Rioux, C K Erdonmez et al. Science, 2004, 304: 711~717. 

    63. [63]

      H Zeng, J Li, Z L Wang et al. Nano Lett., 2004, 4: 187~190. 

    64. [64]

      H Zeng, S H Sun, J Li et al. Appl. Phys. Lett., 2004, 85: 792~794. 

    65. [65]

      F Liu, J H Zhu, W L Yang et al. Angew. Chem. Int. Ed., 2014, 53: 2176~2180. 

    66. [66]

      Q Song, Z J Zhang. J. Am. Chem. Soc., 2012, 134: 10182~10190. 

    67. [67]

      S H Noh, W Na, J T Jang et al. Nano Lett., 2012, 12: 3716~3721. 

    68. [68]

      T J Yoon, H Lee, H L Shao et al. Angew. Chem. Int. Ed., 2011, 50: 4663~4666. 

    69. [69]

      T J Zhou, M H Lu, Z H Zhang et al. Adv. Mater., 2010, 22: 403~406. 

    70. [70]

      N H Cho, T C Cheong, J H Min et al. Nat. Nanotechnol., 2011, 6: 675~682. 

    71. [71]

      H Kim, M Achermann, L P Balet et al. J. Am. Chem. Soc., 2005, 127: 544~546. 

    72. [72]

      J S Lee, M I Bodnarchuk, E V Shevchenko et al. J. Am. Chem. Soc., 2010, 132: 6382~6391. 

    73. [73]

      Q W Tian, J Q Hu, Y H Zhu et al. J. Am. Chem. Soc., 2013, 135: 8571~8577. 

    74. [74]

      E V Shevchenko, M I Bodnarchuk, M V Kovalenko et al. Adv. Mater., 2008, 20: 4323~4329. 

    75. [75]

      J H Gao, G L Liang, B Zhang et al. J. Am. Chem. Soc., 2007, 129: 1428~1433. 

    76. [76]

      W L Shi, H Zeng, Y Sahoo et al. Nano Lett., 2006, 6: 875~881. 

    77. [77]

      W I Liang, X Zhang, Y Zan et al. J. Am. Chem. Soc., 2015, 137: 14850~14853. 

    78. [78]

      H Yu, M Chen, P M Rice et al. Nano Lett., 2005, 5: 379~382. 

    79. [79]

      C Wang, H F Yin, S Dai et al. Chem. Mater., 2010, 22: 3277~3282. 

    80. [80]

      C Wang, H Daimon, S H Sun. Nano Lett., 2009, 9: 1493~1496. 

    81. [81]

      Q Li, L Wu, G Wu et al. Nano Lett., 2015, 15: 2468~2473. 

    82. [82]

      X L Sun, S J Guo, C S Chung et al. Adv. Mater., 2013, 25: 132~136. 

    83. [83]

      L Zhang, Y H Dou, H C Gu. J. Colloid Interf. Sci., 2006, 297: 660~664. 

    84. [84]

      S Peng, C H Lei, Y Ren et al. Angew. Chem. Int. Ed., 2011, 50: 3158~3163. 

    85. [85]

      C J Xu, K M Xu, H W Gu et al. J. Am. Chem. Soc., 2004, 126: 9938~9939. 

    86. [86]

      A S Karakoti, S Das, S Thevuthasan et al. Angew. Chem. Int. Ed., 2011, 50: 1980~1994. 

    87. [87]

      N Kohler, G E Fryxell, M Zhang. J. Am. Chem. Soc., 2004, 126: 7206~7211. 

    88. [88]

      J M Shin, R M Anisur, M K Ko et al. Angew. Chem. Int. Ed., 2009, 48: 321~324. 

    89. [89]

      Y Liu, T Chen, C C Wu et al. J. Am. Chem. Soc., 2014, 136: 12552~12555. 

    90. [90]

      C Qian, L Zhuang. Adv. Mater., 2016, 28: 10557~10566. 

    91. [91]

      J Kim, H S Kim, N Lee et al. Angew. Chem. Int. Ed., 2008, 47: 8438~8441. 

    92. [92]

      A Guerrero-Martinez, J Perez-Juste, L M Liz-Marzan. Adv. Mater., 2010, 22: 1182~1195. 

    93. [93]

      H B Na, J H Lee, K J An et al. Angew. Chem. Int. Ed., 2007, 46: 5397~5401. 

    94. [94]

      B H Kim, N Lee, H Kim et al. J. Am. Chem. Soc., 2011, 133: 12624~12631. 

    95. [95]

      U I Tromsdorf, O T Bruns, S C Salmen et al. Nano Lett., 2009, 9: 4434~4440. 

    96. [96]

      Z Zhou, R Tian, Z Wang et al. Nat Commun., 2017, 8: 15468. 

    97. [97]

      J S Choi, J H Lee, T H Shin et al. J. Am. Chem. Soc., 2010, 132: 11015~11017. 

    98. [98]

      J T Jang, J Lee, J Seon et al. Adv. Mater., 2018, 30: 1704362. 

    99. [99]

      J H Lee, J T Jang, J S Choi et al. Nat. Nanotechnol., 2011, 6: 418~422. 

  • 加载中
    1. [1]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    2. [2]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    5. [5]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    6. [6]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    7. [7]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    8. [8]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    9. [9]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    10. [10]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    11. [11]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    16. [16]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    18. [18]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

Metrics
  • PDF Downloads(4)
  • Abstract views(148)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return