Citation: Pan Xuenan, He Zhiyong, Yang Weiyou, Yang Zuobao. Research Progress in Environmentally Friendly Lead-Free Halide Perovskite Solar Cells[J]. Chemistry, ;2020, 83(7): 621-640. shu

Research Progress in Environmentally Friendly Lead-Free Halide Perovskite Solar Cells

Figures(19)

  • Recently, the metal halide perovskites with ABX3 structure (A=MA+, FA+ or Cs+; B=Pb2+, Sn2+; X=Br- or I- halide cations) have a series of exciting and excellent optoelectronic performances, which is recognized as one of the research frontiers and hot spots in the field of solar cells. However, the problems in terms of the toxic lead component and the instability under ambient conditions greatly hamper the progress for large-scale commercialization of perovskite solar cells. Thereby, it is urgent to develop novel and efficient solar cells based on lead-free metal halide perovskites. In the present work, the state-of-the-art research activities and recent progresses in the exploration of solar cells based on environmental-friendly lead-free metal halide perovskites have been overviewed. The fabrication, optoelectronic performance as well as the stability of the as-constructed solar cells based on lead-free metal halide perovskites have been discussed. The prospects in this area have been proposed.
  • 加载中
    1. [1]

      Bye G, Ceccaroli B. Sol. Energy Mater. Sol. Cells, 2014, 130:634~646. 

    2. [2]

      Yasuda K, Morita K, Okabe T H. Energy Technol., 2014, 2(2):141~154. 

    3. [3]

      Xing Y, Han P, Wang S, et al. Renew. Sust. Energ. Rev., 2015, 51:1697~1708. 

    4. [4]

      Burst J M, Duenow J N, Albin D S, et al. Nat. Energy, 2016, 1(3):16015. 

    5. [5]

      Kabir E, Kumar P, Kumar S, et al. Renew. Sust. Energ. Rev., 2018, 82:894~900. 

    6. [6]

      Brenes R, Laitz M, Jean J, et al. Phys. Rev. Appl., 2019, 12(1):014017.

    7. [7]

      Dhawale D S, Ali A, Lokhande A C. Sustain. Energy Fuels, 2019, 3(6):1365~1383. 

    8. [8]

      Kowsar A, Rahaman M, Islam M S, et al. Int. J. Energ. Res., 2019, 9(2):579~597.

    9. [9]

      Veinberg-Vidal E, Vauche L, Medjoubi K, et al. Prog. Photovoltaics, 2019, 27(7):652~661.

    10. [10]

      Stranks S D, Snaith H J. Nat. Nanotechnol., 2015, 10(5):391~402. 

    11. [11]

      De Wolf S, Holovsky J, Moon S J, et al. J. Phys. Chem. Lett., 2014, 5(6):1035~1039. 

    12. [12]

      Im J H, Lee C R, Lee J W, et al. Nanoscale, 2011, 3(10):4088~4493. 

    13. [13]

      Conings B, Drijkoningen J, Gauquelin N, et al. Adv. Energ. Mater., 2015, 5(15):1500477. 

    14. [14]

      Kojima A, Teshima K, Shirai Y, et al. J. Am. Chem. Soc., 2009, 131(17):6050~6051. 

    15. [15]

      Hao F, Stoumpos C C, Cao D H, et al. Nat. Photonics, 2014, 8:489~494. 

    16. [16]

      Dong Q, Fang Y, Shao Y, et al. Science, 2015, 347(6225):967~970. 

    17. [17]

      Stranks S D, Eperon G E, Grancini G, et al. Science, 2013, 342(6156):341~344. 

    18. [18]

      Rabinowitz M B, Wetherill G W, Kopple J D. Science, 1973, 182(4113):725~727. 

    19. [19]

      Babayigit A, Ethirajan A, Muller M, et al. Nat. Mater., 2016, 15(3):247~251. 

    20. [20]

      Gao P, Grätzel M, Nazeeruddin M K. Energ. Environ. Sci., 2014, 7(8):2448~2463. 

    21. [21]

      Hailegnaw B, Kirmayer S, Edri E, et al. J. Phys. Chem. Lett., 2015, 6(9):1543~1547. 

    22. [22]

      Zhang T, Chen H, Bai Y, et al. Nano Energy, 2016, 26:620~630. 

    23. [23]

      Cheng P, Wu T, Zhang J, et al. J. Phys. Chem. Lett., 2017, 8(18):4402~4406. 

    24. [24]

      S F Hoefler, G Trimmel, T Rath. Monatsh. Chem., 2017, 148(5):795~826. 

    25. [25]

      Krishnamoorthy T, Ding H, Yan C, et al. J. Mater. Chem. A, 2015, 3(47):23829~23832. 

    26. [26]

      L Liang, P Gao. Adv. Sci., 2018, 5(2):1700331. 

    27. [27]

      Nie R, Mehta A, Park B W, et al. J. Am. Chem. Soc., 2018, 140(3):872~875. 

    28. [28]

      Noel N K, Stranks S D, Abate A, et al. Energ. Environ. Sci., 2014, 7(9):3061~3068. 

    29. [29]

      Zhao Z, Gu F, Li Y, et al. Adv. Sci., 2017, 4(11):1700204. 

    30. [30]

      Chen M, Ju M G, Carl A D, et al. Joule, 2018, 2(3):558~570. 

    31. [31]

      Chung I, Lee B, He J, et al. Nature, 2012, 485(7399):486~489. 

    32. [32]

      Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorg. Chem., 2013, 52(15):9019~9038. 

    33. [33]

      Ma L, Hao F, Stoumpos C C, et al. J. Am. Chem. Soc., 2016, 138(44):14750~14755. 

    34. [34]

      Marshall K P, Walker M, Walton R I, et al. Nat. Energy, 2016, 1(12):16178. 

    35. [35]

      Nakajima T, Sawada K. J. Phys. Chem. Lett., 2017, 8(19):4826~4831. 

    36. [36]

      Ali R, Hou G J, Zhu Z G, et al. Chem. Mater., 2018, 30(3):718~728.

    37. [37]

      Lee B, Stoumpos C C, Zhou N, et al. J. Am. Chem. Soc., 2014, 136(43):15379~15385. 

    38. [38]

      Lee S J, Shin S S, Kim Y C, et al. J. Am. Chem. Soc., 2016, 138(12):3974~3977. 

    39. [39]

      Kumar M H, Dharani S, Leong W L, et al. Adv. Mater., 2014, 26(41):7122~7127. 

    40. [40]

      Song T B, Yokoyama T, Aramaki S, et al. ACS Energ. Lett., 2017, 2(4):897~903. 

    41. [41]

      Gupta S, Cahen D, Hodes G. J. Phys. Chem. C, 2018, 122(25):13926~13936. 

    42. [42]

      Gu F, Ye S, Zhao Z, et al. Solar RRL, 2018, 2(10):1800136. 

    43. [43]

      Nguyen B P, Shin D, Jung H R, et al. Sol. Energy, 2019, 186:136~144. 

    44. [44]

      Hao F, Stoumpos C C, Guo P, et al. J. Am. Chem. Soc., 2015, 137(35):11445~11452. 

    45. [45]

      Liu X, Yan K, Tan D, et al. ACS Energ. Lett., 2018, 3(11):2701~2707. 

    46. [46]

      Rath T, Handl J, Weber S, et al. J. Mater. Chem. A, 2019, 7(16):9523~9529. 

    47. [47]

      Liu J, Ozaki M, Yakumaru S, et al. Angew. Chem. Int. Ed., 2018, 57(40):13221~13225. 

    48. [48]

      Li X L, Gao L L, Chu Q Q, et al. ACS Appl. Mater. Interf., 2019, 11(3):3053~3060. 

    49. [49]

      Yokoyama T, Cao D H, Stoumpos C C, et al. J. Phys. Chem. Lett., 2016, 7(5):776~782. 

    50. [50]

      Zhu P, Chen C, Gu S, et al. Solar RRL, 2018, 2(4):1700224. 

    51. [51]

      Yu Y, Zhao D, Grice C R, et al. RSC Adv., 2016, 6(93):90248~90254. 

    52. [52]

      Moghe D, Wang L, Traverse C J, et al. Nano Energy, 2016, 28:469~474. 

    53. [53]

      Liu C, Tu J, Hu X, et al. Adv. Funct. Mater., 2019, 29(18):1808059. 

    54. [54]

      Tai Q, Guo X, Tang G, et al. Angew. Chem. Int. Ed., 2019, 58(3):806~810. 

    55. [55]

      Gao W, Ran C, Li J, et al. J. Phys. Chem. Lett., 2018, 9(24):6999~7006. 

    56. [56]

      Li F, Zhang C, Huang J H, et al. Angew. Chem. Int. Ed., 2019, 58(20):6688~6692. 

    57. [57]

      Tsarev S, Boldyreva A G, Luchkin S Y, et al. J. Mater. Chem. A, 2018, 6(43):21389~21395. 

    58. [58]

      Tsai H, Nie W, Blancon J C, et al. Nature, 2016, 536(7616):312~316. 

    59. [59]

      Deng Y, Dong Q, Bi C, et al. Adv. Energ. Mater., 2016, 6(11):1600372. 

    60. [60]

      Wang Y, Tu J, Li T, et al. J. Mater. Chem. A, 2019, 7(13):7683~7690. 

    61. [61]

      Zimmermann I, Aghazada S, Nazeeruddin M K. Angew. Chem. Int. Ed., 2019, 58(4):1072~1076. 

    62. [62]

      Jokar E, Chien C H, Tsai C M, et al. Adv. Mater., 2019, 31(2):1804835. 

    63. [63]

      Shao S, Dong J, Duim H, et al. Nano Energy, 2019, 60:810~816. 

    64. [64]

      Nguyen B P, Jung H R, Kim J, et al. Nanotechnology, 2019, 30(31):314005. 

    65. [65]

      Dixit H, Punetha D, Pandey S K. Optik, 2019, 179:969~976. 

    66. [66]

      Li S, Liu P, Pan L, et al. Sol. Energ. Mater. Sol. Cells, 2019, 199:75~82. 

    67. [67]

      Marshall K P, Walton R I, Hatton R A. J. Mater. Chem. A, 2015, 3(21):11631~11640. 

    68. [68]

      Song T B, Yokoyama T, Logsdon J, et al. ACS Appl. Energ. Mater., 2018, 1(8):4221~4226. 

    69. [69]

      Liao Y, Liu H, Zhou W, et al. J. Am. Chem. Soc., 2017, 139(19):6693~6699. 

    70. [70]

      Shin H, Kim B M, Jang T, et al. Adv. Energ. Mater., 2019, 9(3):1803243. 

    71. [71]

      Zhu Z, Chueh C C, Li N, et al. Adv. Mater., 2018, 30(6):1703800. 

    72. [72]

      Jokar E, Chien C H, Fathi A, et al. Energ. Environ. Sci., 2018, 11(9):2353~2362. 

    73. [73]

      Kopacic I, Friesenbichler B, Hoefler S F, et al. ACS Appl. Energ. Mater., 2018, 1(2):343~347. 

    74. [74]

      Li C, Lu X, Ding W, et al. Acta Crystallogr. B, 2008, 64(6):702~707. 

    75. [75]

      Uribe J I, Ramirez D, Osorio-Guillén J M, et al. J. Phys. Chem. C, 2016, 120(30):16393~16398. 

    76. [76]

      Stoumpos C C, Frazer L, Clark D J, et al. J. Am. Chem. Soc., 2015, 137(21):6804~6819. 

    77. [77]

      Houari M, Bouadjemi B, Matougui M, et al. Opt. Quant. Electron., 2019, 51(7):234. 

    78. [78]

      Qian J, Xu B, Tian W. Org. Electron., 2016, 37:61~73. 

    79. [79]

      Chen M, Ju M G, Garces H F, et al. Nat. Commun., 2019, 10(1):16.

    80. [80]

      Ng C H, Nishimura K, Ito N, et al. Nano Energy, 2019, 58:130~137. 

    81. [81]

      Liu F, Ding C, Zhang Y, et al. Chem. Mater., 2019, 31(3):798~807.

    82. [82]

      Chen L J. RSC Adv., 2018, 8(33):18396~18399. 

    83. [83]

      Machulin V F, Motsnyi F V, Smolanka O M, et al. Low Temp. Phys., 2004, 30(12):964~967. 

    84. [84]

      Lehner A J, Fabini D H, Evans H A, et al. Chem. Mater., 2015, 27(20):7137~7148. 

    85. [85]

      Park B W, Philippe B, Zhang X, et al. Adv. Mater., 2015, 27(43):6806~6813. 

    86. [86]

      Abulikemu M, Ould-Chikh S, Miao X, et al. J. Mater. Chem. A, 2016, 4(32):12504~12515. 

    87. [87]

      Eckhardt K, Bon V, Getzschmann J, et al. Chem. Commun., 2016, 52(14):3058~3060. 

    88. [88]

      Hoye R L Z, Brandt R E, Osherov A, et al. Chem. Eur. J., 2016, 22(8):2605~2610. 

    89. [89]

      Lyu M, Yun J H, Cai M, et al. Nano Res., 2016, 9(3):692~702. 

    90. [90]

      z S, Hebig J C, Jung E, et al. Sol. Energ. Mater. Sol. Cells, 2016., 158:195~201.

    91. [91]

      Singh T, Kulkarni A, Ikegami M, et al. ACS Appl. Mater. Interf., 2016, 8(23):14542~14547. 

    92. [92]

      Zhang Z, Li X, Xia X, et al. J. Phys. Chem. Lett., 2017, 8(17):4300~4307. 

    93. [93]

      Kawai T, Shimanuki S. Phys. Status Solidi B, 1993, 177(1):K43~K45.

    94. [94]

      Kawai T, Ishii A, Kitamura T, et al. J. Phys. Soc. Jpn., 1996, 65(5):1464~1468. 

    95. [95]

      Li F, Fan H, Wang P, et al. J. Mater. Sci., 2019, 54(14):10371~10378. 

    96. [96]

      Shin S S, Correa Baena J P, Kurchin R C, et al. Chem. Mater., 2018, 30(2):336~343.

    97. [97]

      Mohammad T, Kumar V, Dutta V. Sol. Energy, 2019, 182:72~79. 

    98. [98]

      Lan C, Liang G, Zhao S, et al. Sol. Energy, 2019, 177:501~507. 

    99. [99]

      Rühle S. Sol. Energy, 2016, 130:139~147. 

    100. [100]

      Yin W J, Yan Y, Wei S H. J. Phys. Chem. Lett., 2014, 5(21):3625~3631. 

    101. [101]

      Kim Y, Yang Z, Jain A, et al. Angew. Chem. Int. Ed., 2016, 55(33):9586~9590. 

    102. [102]

      McClure E T, Ball M R, Windl W, et al. Chem. Mater., 2016, 28(5):1348~1354.

    103. [103]

      Filip M R, Liu X, Miglio A, et al. J. Phys. Chem. C, 2017, 122(1):158~170.

    104. [104]

      Yu B B, Liao M, Yang J, et al. J. Mater. Chem. A, 2019, 7(15):8818~8825. 

    105. [105]

      Johansson M B, Zhu H, Johansson E M. J. Phys. Chem. Lett., 2016, 7(17):3467~3471. 

    106. [106]

      Shin J, Kim M, Jung S, et al. Nano Res., 2018, 11(12):6283~6293. 

    107. [107]

      Bai F, Hu Y, Hu Y, et al. Sol. Energ. Mater. Sol. Cells, 2018, 184:15~21. 

    108. [108]

      Dammak H, Yangui A, Triki S, et al. J. Lumin., 2015, 161:214~220. 

    109. [109]

      Hebig J C, Kühn I, Flohre J, et al. ACS Energ. Lett., 2016, 1(1):309~314. 

    110. [110]

      Zaleski J, Jakubas R, Sobczyk L, et al. Ferroelectrics, 1990, 103(1):83~90. 

    111. [111]

      Jakubas R, Decressain R, Lefebvre J. J. Phys. Chem. Solids, 1992, 53(6):755~759. 

    112. [112]

      Mitzi D B. Inorg. Chem., 2000, 39(26):6107~6113. 

    113. [113]

      Boopathi K M, Karuppuswamy P, Singh A, et al. J. Mater. Chem. A, 2017, 5(39):20843~20850. 

    114. [114]

      Karuppuswamy P, Boopathi K M, Mohapatra A, et al. Nano Energy, 2018, 45:330~336. 

    115. [115]

      Ju D, Jiang X, Xiao H, et al. J. Mater. Chem. A, 2018, 6(42):20753~20759. 

    116. [116]

      Harikesh P C, Mulmudi H K, Ghosh B, et al. Chem. Mater., 2016, 28(20):7496~7504. 

    117. [117]

      Brandt R E, Stevanovi? V, Ginley D S, et al. MRS Commun., 2015, 5(2):265~275. 

    118. [118]

      Umar F, Zhang J, Jin Z, et al. Adv. Opt. Mater., 2019, 7(5):1801368. 

    119. [119]

      Singh A, Boopathi K M, Mohapatra A, et al. ACS Appl. Mater. Interf., 2018, 10(3):2566~2573. 

    120. [120]

      Maughan A E, Ganose A M, Bordelon M M, et al. J. Am. Chem. Soc., 2016, 138(27):8453~8464. 

    121. [121]

      Slavney A H, Hu T, Lindenberg A M, et al. J. Am. Chem. Soc., 2016, 138(7):2138~2141. 

    122. [122]

      Volonakis G, Filip M R, Haghighirad A A, et al. J. Phys. Chem. Lett., 2016, 7(7):1254~1259. 

    123. [123]

      Filip M R, Hillman S, Haghighirad A A, et al. J. Phys. Chem. Lett., 2016, 7(13):2579~2585. 

    124. [124]

      Greul E, Petrus M L, Binek A, et al. J. Mater. Chem. A, 2017, 5(37):19972~19981. 

    125. [125]

      Gao W, Ran C, Xi J, et al. ChemPhysChem, 2018, 19(14):1696~1700. 

    126. [126]

      Pantaler M, Cho K T, Queloz V I E, et al. ACS Energ. Lett., 2018, 3(8):1781~1786. 

    127. [127]

      Wang M, Zeng P, Bai S, et al. Solar RRL, 2018, 2(12):1800217. 

    128. [128]

      Igbari F, Wang R, Wang Z K, et al. Nano Lett., 2019, 19(3):2066~2073. 

    129. [129]

      Zhang C, Gao L, Teo S, et al. Sustain. Energ. Fuels, 2018, 2(11):2419~2428. 

    130. [130]

      Chatterjee S, Pal A J. ACS Appl. Mater. Interf., 2018, 10(41):35194~35205. 

    131. [131]

      Dai W B, Xu S, Zhou J, et al. Sol. Energ. Mater. Sol. Cells, 2019, 192:140~146. 

    132. [132]

      Saparov B, Sun J P, Meng W, et al. Chem. Mater., 2016, 28(7):2315~2322. 

    133. [133]

      Lee B, Krenselewski A, Baik S I, et al. Sustain. Energ. Fuels, 2017, 1(4):710~724. 

    134. [134]

      Qiu X, Jiang Y, Zhang H, et al. Phys. Status Solidi RRL, 2016, 10(8):587~591. 

    135. [135]

      Qiu X, Cao B, Yuan S, et al. Sol. Energ. Mater. Sol. Cells, 2017, 159:227~234. 

    136. [136]

      Ke J C R, Lewis D J, Walton A S, et al. J. Mater. Chem. A, 2018, 6(24):11205~11214. 

    137. [137]

      Ju M G, Chen M, Zhou Y, et al. ACS Energ. Lett., 2018, 3(2):297~304. 

    138. [138]

      Qiao L, Fang W H, Long R. J. Phys. Chem. Lett., 2018, 9(23):6907~6914. 

    139. [139]

      Turkevych I, Kazaoui S, Ito E, et al. ChemSusChem, 2017, 10(19):3754~3759. 

    140. [140]

      Oh J T, Kim D H, Kim Y. J Visuali. Exp., 2018, (139):e58286.

    141. [141]

      Shao Z, Le Mercier T, Madec M B, et al. Mater. Lett., 2018, 221:135~138. 

    142. [142]

      Kulkarni A, Jena A K, Ikegami M, et al. Chem. Commun., 2019, 55(28):4031~4034. 

    143. [143]

      Zhu H, Pan M, Johansson M B, et al. ChemSusChem, 2017, 10(12):2592~2596. 

    144. [144]

      Lu C, Zhang J, Sun H, et al. ACS Appl. Energ. Mater., 2018, 1(9):4485~4492. 

    145. [145]

      Hu Z, Wang Z, Kapil G, et al. ChemSusChem, 2018, 11(17):2930~2935. 

    146. [146]

      Zhang B, Lei Y, Qi R, et al. Sci. China:Mater., 2018, 62(4):519~526.

    147. [147]

      Weber S, Rath T, Fellner K, et al. ACS Appl. Energ. Mater., 2018, 2(1):539~547.

  • 加载中
    1. [1]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    4. [4]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    5. [5]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    8. [8]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    11. [11]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    12. [12]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    13. [13]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    14. [14]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    15. [15]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    17. [17]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    18. [18]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

Metrics
  • PDF Downloads(13)
  • Abstract views(1390)
  • HTML views(424)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return