Citation: ZHANG Li-xiang, ZHANG An-chao, ZHU Qi-feng, WANG Hua, ZHANG Chun-jing. Effects of experimental parameters on Hg0 removal over magnetic AgI-BiOI/CoFe2O4 photocatalysts using wet process[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 365-374. shu

Effects of experimental parameters on Hg0 removal over magnetic AgI-BiOI/CoFe2O4 photocatalysts using wet process

  • Corresponding author: ZHANG An-chao, anchaozhang@126.com
  • Received Date: 15 September 2017
    Revised Date: 3 February 2018

    Fund Project: the Outstanding Youth Science Foundation of Henan Polytechnic University J2016-1the Fundamental Research Funds for the Universities of Henan Province NSFRF140204The project was supported by the National Natural Science Foundation of China 51306046The project was supported by the National Natural Science Foundation of China 51676064The project was supported by the National Natural Science Foundation of China (51676064, 51306046, and U1404520), the Young Core Instructor Project in the Higher Education Institutions of Henan Province (2016GGJS-038), the Fundamental Research Funds for the Universities of Henan Province (NSFRF140204) and the Outstanding Youth Science Foundation of Henan Polytechnic University (J2016-1)the Young Core Instructor Project in the Higher Education Institutions of Henan Province 2016GGJS-038The project was supported by the National Natural Science Foundation of China U1404520

Figures(11)

  • A novel magnetic AgI-BiOI/CoFe2O4 hybrid composites were prepared via a solvothermal and subsequent coprecipitation method, and utilized to remove Hg0 from coal-fired flue gas under fluorescent light irradiation. The experimental parameters and main products presented in solution after reaction were investigated in detail. The experimental results showed that the AgI-BiOI/CoFe2O4 composites showing a poor thermal stability would transform into other compounds when the calcinated temperature was above 400℃. With the increases of photocatalyst dosage, reaction solution pH, temperature of reaction solution in reactor and O2 concentration, the Hg0 removal efficiencies were first increased and then unchanged or decreased. The presences of inorganic anions such as CO32- and SO42- in solution exhibited some inhibitory effects on Hg0 removal. Furthermore, the presence of SO2 had a dramatic inhibition on Hg0 removal, while the inhibitory effect of NO on Hg0 removal was relatively small. SO42-, NO3- and Hg2+ species were the final oxidation products of SO2, NO and Hg0 by reactive species.
  • 加载中
    1. [1]

      YANG S J, GUO Y F, YAN N Q, WU D Q, HE H P, XIE J K, QU Z, JIA J P. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B:Environ, 2011,10(3/4):698-708.  

    2. [2]

      ZHOU Q, DUAN Y F, HONG Y G, ZHU C, SHE M, ZHANG J, WEI H Q. Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon[J]. Fuel Process Technol, 2015,134:325-332. doi: 10.1016/j.fuproc.2014.12.052

    3. [3]

      YOU C F, XU X C. Coal combustion and its pollution control in China[J]. Energy, 2010,35(11):4467-4472. doi: 10.1016/j.energy.2009.04.019

    4. [4]

      WU J, LI C E, ZHAO X Y, WU Q, QI X M, CHEN X T, HU T, CAO Y. Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2[J]. Appl Catal B:Environ, 2015,176/177:559-569. doi: 10.1016/j.apcatb.2015.04.044

    5. [5]

      ZHANG Hua-wei, CHEN Jiang-yan, ZHAO Ke, NIU Qing-xin, WANG Li. Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping[J]. J Fuel Chem Technol, 2016,44(4):394-400.  

    6. [6]

      HAN L N, HE X X, YUE C X, HU Y F, LI L N, CHANG L P, WANG H, WANG J C. Fe doping Pd/AC sorbent efficiently improving the Hg0 removal from the coal-derived fuel gas[J]. Fuel, 2016,182:64-72. doi: 10.1016/j.fuel.2016.05.046

    7. [7]

      WANG F M, LI G L, SHEN B X, WANG Y Y, HE C. Mercury removal over the vanadia-titania catalyst in CO2-enriched conditions[J]. Chem Eng J, 2015,263:356-363. doi: 10.1016/j.cej.2014.10.091

    8. [8]

      JEON S H, EOM Y J, LEE T G. Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers[J]. Chemosphere, 2008,71(5):969-974. doi: 10.1016/j.chemosphere.2007.11.050

    9. [9]

      WU J, LI X, REN J X, QI X M, HE P, NI B, ZHANG C, HU C Z, ZHOU J. Experimental study of TiO2 hollow microspheres removal on elemental mercury in simulated flue gas[J]. J Ind Eng Chem, 2015,32:49-57. doi: 10.1016/j.jiec.2015.07.019

    10. [10]

      SNIDER G, ARIYA P. Photo-catalytic oxidation reaction of gaseous mercury over titanium dioxide nanoparticle surfaces[J]. Chem Phys Lett, 2010,491(1/3):23-28.  

    11. [11]

      SHEN H Z, IE I R, YUAN C S, HUNG C H, CHEN W H, LUO J J, JEN Y H. Enhanced photocatalytic oxidation of gaseous elemental mercury by TiO2 in a high temperature environment[J]. J Hazard Mater, 2015,289:235-243. doi: 10.1016/j.jhazmat.2015.02.033

    12. [12]

      YUAN Yuan, ZHANG Jun-ying, ZHAO Yong-chun, WANG Yu-xiang, ZHENG Chu-guang. Effects of SO2 and NO on removal of elemental mercury using a TiO2-aluminum silicate fiber[J]. J Fuel Chem Technol, 2012,40(5):630-635.  

    13. [13]

      LI Y, WU C Y. Kinetic study for photocatalytic oxidation of elemental mercury on a SiO2-TiO2 nanocomposite[J]. Environ Eng Sci, 2007,24(1):3-12. doi: 10.1089/ees.2007.24.3

    14. [14]

      YUAN Y, ZHANG J Y, LI H L, LI Y, ZHAO Y C, ZHENG C G. Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J]. Chem Eng J, 2012,192(2):21-28.  

    15. [15]

      QI X M, GU M L, ZHU X Y, WU J, LONG H M, HE K, WU Q. Fabrication of BiOIO3 nanosheets with remarkable photocatalytic oxidation removal for gaseous elemental mercury[J]. Chem Eng J, 2016,285:11-19. doi: 10.1016/j.cej.2015.09.055

    16. [16]

      DONG G H, HO W K, ZHANG L Z. Photocatalytic NO removal on BiOI surface:The change from nonselective oxidation to selective oxidation[J]. Appl Catal B:Environ, 2015,168(168/169):490-496.  

    17. [17]

      OU M, ZHONG Q, ZHANG S L, NIE H Y, LV Z J, CAI W. Graphene-decorated 3D BiVO4 superstructure:Highly reactive (040) facets formation and enhanced visible-light-induced photocatalytic oxidation of NO in gas phase[J]. Appl Catal B:Environ, 2016,193:160-169. doi: 10.1016/j.apcatb.2016.04.029

    18. [18]

      ZHANG A C, XING W B, ZHANG D, WANG H, CHEN G Y, XIANG J. A novel low-cost method for Hg0removal from flue gas by visible-light-driven BiOX (X=Cl, Br, I) photocatalysts[J]. Catal Commun, 2016,87:57-61. doi: 10.1016/j.catcom.2016.09.003

    19. [19]

      ZHANG A C, ZHANG L X, CHEN X Z, ZHU Q F, LIU Z C, XIANG J. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light[J]. Appl Surf Sci, 2017,392:1107-1116. doi: 10.1016/j.apsusc.2016.09.116

    20. [20]

      ZHANG L X, ZHANG A C, LU H, SUN Z J, SHENG W, SUN L S, XIANG J. Magnetically separable AgI-BiOI/CoFe2O4 hybrid composites for Hg0 removal:Characterization, activity and mechanism[J]. RSC Adv, 2017,7(50):31448-31456. doi: 10.1039/C7RA04175F

    21. [21]

      CHENG H F, HUANG B B, DAI Y, QIN X Y, ZHANG X Y. One-Step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances[J]. Langmuir, 2010,26(9):6618-6624. doi: 10.1021/la903943s

    22. [22]

      YU C L, FAN C F, YU J C, ZHOU W Q, YANG K. Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV light irradiation[J]. Mater Res Bull, 2011,46(1):140-146. doi: 10.1016/j.materresbull.2010.08.013

    23. [23]

      CAO J, LI X, LIN H L, XU B Y, LUO B D, CHEN S F. Low temperature synthesis of novel rodlike Bi5O7I with visible light photocatalytic performance[J]. Mater Lett, 2012,76(6):181-183.  

    24. [24]

      RAUF M A, MARZOUKI N, KORBAHTI B K. Photolytic decolorization of Rose Bengal by UV/H2O2 and data optimization using response surface method[J]. J Hazard Mater, 2008,159(2/3):602-609.  

    25. [25]

      SANTIAGO D E, ARANA J, GONZÁLEZ-D O, ALEMÁN-D M E, ACOSTA-D A C, FERNANDEZ-R C, PÉREZ-P J, DONA-R J M. Effect of inorganic ions on the photocatalytic treatment of agro-industrial wastewaters containing imazalil[J]. Appl Catal B:Environ, 2014,156/157(3):284-292.  

    26. [26]

      CHEN J, HU Z, WANG D, GAO C, JI R. Photocatalytic mineralization of dimethoate in aqueous solutions using TiO2:Parameters and by-products analysis[J]. Desalination, 2010,258(1):28-33.  

    27. [27]

      ZHAO Y, HAO R L. Macrokinetics of Hg0 removal by a vaporized multicomponent oxidant[J]. Ind Eng Chem Res, 2014,53(27):10899-10905. doi: 10.1021/ie5009376

    28. [28]

      XIA D H, HU L L, HE C, PAN W Q, YANG T S, YANG Y C, SHU D. Simultaneous photocatalytic elimination of gaseous NO and SO2 in a BiOI/Al2O3-padded trickling scrubber under visible light[J]. Chem Eng J, 2015,279:929-938. doi: 10.1016/j.cej.2015.05.097

    29. [29]

      KIM J, LEE C W, CHOI W. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light[J]. Environ Sci Technol, 2010,44(17):6849-6854. doi: 10.1021/es101981r

    30. [30]

      LIU Y X, ZHANG J, SHENG C D, ZHANG Y C, ZHAO L. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chem Eng J, 2010,162(3):1006-1011. doi: 10.1016/j.cej.2010.07.009

    31. [31]

      LASEK J, YU Y H, WU J C S. Removal of NOx by photocatalytic processes[J]. J Photochem Photobiol C, 2013,14(1):29-52.  

    32. [32]

      MCLARNON C R, GRANITE E J, PENNLINE H W. The PCO Process for photochemical removal of mercury from flue gas[J]. Fuel Process Technol, 2005,87(1):85-89. doi: 10.1016/j.fuproc.2005.07.001

    33. [33]

      LIU Y X, ZHANG J, SHENG C D, ZHANG Y C, ZHAO L. Preliminary study on a new technique for wet removal of nitric oxide from simulated flue gas with an ultraviolet (UV)/H2O2 process[J]. Energy Fuels, 2010,24(9):4925-4930. doi: 10.1021/ef1006325

  • 加载中
    1. [1]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    2. [2]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    3. [3]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    4. [4]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    5. [5]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    6. [6]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    7. [7]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    8. [8]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    9. [9]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    10. [10]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    11. [11]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    12. [12]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    13. [13]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    14. [14]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    15. [15]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    17. [17]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    18. [18]

      Keliang LiGuoqiang DongShanchao WuChunquan Sheng . Discovery of an activatable near-infrared fluorescent and theranostic PROTAC for tumor-targeted detecting and degrading of BRD4. Chinese Chemical Letters, 2025, 36(6): 110280-. doi: 10.1016/j.cclet.2024.110280

    19. [19]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    20. [20]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

Metrics
  • PDF Downloads(6)
  • Abstract views(602)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return