Citation: WANG Lin-fang, ZOU Cheng, GUO Da-liang, XUE Guo-xin. Effect of extraction temperature on depolymerization characteristics of ethanol organosolv lignin in supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 798-804. shu

Effect of extraction temperature on depolymerization characteristics of ethanol organosolv lignin in supercritical ethanol

  • Corresponding author: GUO Da-liang, guodl@zstu.edu.cn XUE Guo-xin, xueguoxin@126.com
  • Received Date: 16 January 2017
    Revised Date: 14 March 2017

    Fund Project: Zhejiang Province Natural Science Foundation of China LY16C160005Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, Zhejiang Sci-Tech University 2013YBZX06the Open Fund of Key Laboratory of Biomass Energy and Material of China JSBEM201504Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, Zhejiang Sci-Tech University ZYG2015012the Open Fund of Tianjin Key Laboratory of Pulp & Paper (Tianjin University of Science & Technology) 201601

Figures(5)

  • Effect of extraction temperature (160, 180 and 200 ℃) on depolymerization characteristics of ethanol organosolv lignin (EOL) was investigated with a micro autoclave reactor. Three different EOLs (EOL-160, EOL-180 and EOL-200) were prepared by controlling extraction temperature, and their properties including functional groups, molecular weight distribution and thermogravimetric properties were analyzed by infrared spectroscopy (FT-IR), gel permeation chromatography (GPC) and thermogravimetric analysis (TG). The liquid and solid products obtaining from EOLs depolymerized in supercritical ethanol were analyzed by gas chromatography/mass spectrometry (GC/MS) and FT-IR, respectively. The results show that the main phenolic compound product for EOL-160, EOL-180 and EOL-200 depolymerized in supercritical ethanol were paraethyl phenol, 2,6-dimethoxy phenol and 4-hydroxy-3-methoxy-benzoate, respectively.
  • 加载中
    1. [1]

      KIFAYAT U, MUSHTAQ A, VINOD K, LU P, ADAM H, MUHAMMAD Z, SHAZIA S. Assessing the potential of algal biomass opportunities for bioenergy industry:A review[J]. Fuel, 2015,143(4):414-423.  

    2. [2]

      SUN Yong, LI Zuo-hu, XIAO Huang-xin. The research progress of lignin separation methods[J]. China Pulp Pap Ind, 2005,26(10):58-61.  

    3. [3]

      ZHANG J G, HIROYUKI A, JEAPHIANNE V R. Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals[J]. Green Chem, 2014,16(5):2432-2437. doi: 10.1039/C3GC42589D

    4. [4]

      CHEN Meng-wei, GUO Da-liang, WANG Lin-fang, XUE Guo-xin. Study on the depolymerization mechanism of alkali lignin in sub-and supercritical sthanol[J]. J Fuel Chem Technol, 2016,44(10):1203-1210. doi: 10.3969/j.issn.0253-2409.2016.10.007 

    5. [5]

      YUAN Z S, CHENG S, LEITCH M. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol[J]. Bioresour Technol, 2010,101(23):9308-9313. doi: 10.1016/j.biortech.2010.06.140

    6. [6]

      PARK S Y, CHANG Y H, HAN S J. Improvement of oil properties by combination of organic solvents and formic acid during supercritical depolymerization[J]. J Anal Appl Pyrolysis, 2016,121:113-120. doi: 10.1016/j.jaap.2016.07.011

    7. [7]

      ANA T, LUIS S, JALEL L. Improving base catalyzed lignin depolymerization byavoiding lignin repolymerization[J]. Fuel, 2014,116:617-624. doi: 10.1016/j.fuel.2013.08.071

    8. [8]

      GOSSELINK R J, TEUNISSEN W, VAN D J, DE J E, GELLERSTEDT G, SCOTT E L. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals[J]. Bioresour Technol, 2012,106:173-177. doi: 10.1016/j.biortech.2011.11.121

    9. [9]

      YUE Y Y, YU Z, JUAN F, JIE C. Novel method for production of phenolics by combining lignin extraction with lignin depolymerization in aqueous ethanol[J]. Ind Eng Chem Res, 2012,51(1):103-110. doi: 10.1021/ie202118d

    10. [10]

      QIU L Y, JIAN B S, LU L. Characterization of structural changes of lignin in the process of cooking of bagasse with solid alkali and active oxygen as a pretreatment for lignin conversion[J]. Energy Fuels, 2012,26(11):6999-7004.  

    11. [11]

      LOU Rui. Thermal cracking characteristics of non-wood fiber lignin and product form the way of control[D]. Guangzhou:South China University of Technology, 2011.

    12. [12]

      YANZ G, JING H Z, JIA L W, GUANG W S, YI J S. Structural transformations of triploid of Populus tomentosa Carr. Lignin during auto-catalyzed ethanol organosolv pretreatment[J]. Ind Crop Prod, 2015,76:522-529. doi: 10.1016/j.indcrop.2015.06.020

    13. [13]

      MAURICIO Y S, BETTY M, CAROLINA N, SHAOBO P. Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus:Effect of extraction conditions on the molecular structure[J]. Polym Degrad Stabil, 2014,110(1s):184-194.  

    14. [14]

      MAHMOOD N, YUAN Z, SCHMIDT J, XU C C. Hydrolytic depolymerization of hydrolysis lignin:Effects of catalysts and solvents[J]. Bioresour Technol, 2015,190:416-419. doi: 10.1016/j.biortech.2015.04.074

    15. [15]

      MIAO W, JIN H P, XUE M Z. Enhancement of lignin biopolymer Isolation from hybrid poplar by organosolv pretreatments[J]. Int J Polym Sci, 2014(3):1-10.  

  • 加载中
    1. [1]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    2. [2]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    3. [3]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    4. [4]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    6. [6]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    7. [7]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    8. [8]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    9. [9]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    10. [10]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    11. [11]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

Metrics
  • PDF Downloads(4)
  • Abstract views(1045)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return