Citation: Yang Xu, Zhao Lixin, Liu Lin, Zhang Yu. Progress in Electrostatic Coalescence Technology in Oil-Water Separation[J]. Chemistry, ;2018, 81(1): 52-58. shu

Progress in Electrostatic Coalescence Technology in Oil-Water Separation

  • Corresponding author: Zhao Lixin, Lx_zhao@126.com
  • Received Date: 29 July 2017
    Accepted Date: 28 September 2017

Figures(8)

  • Electrostatic coalescence technology has the characteristics of fast, clean and high efficiency, usually do not need to add chemical reagent, and no additional pollutants are produced. Compared with gravity sedimentation method, it is more suitable for water droplet of small size or oil-water mixture with stable oil-water interface. In this paper, we briefly reviewed the coalescence principle of electrostatic coalescence, summarized the research and application progress on traditional electric dehydration technology, pipe electrostatic pre-coalescence and vessel internal electrostatic coalescence, compared and analyzed the application fields and technical characteristics of three kinds of electrostatic coalescence, introduced the current research situation of electrostatic coalescence and turbulence/shear flow coupling technique. Finally, the development trend of electrostatic coalescence was summarized and predicted.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

       

    5. [5]

       

    6. [6]

       

    7. [7]

      F G Cottrell, J B Speed. USP:987115, 1911.

    8. [8]

      G Berg, L E Lundgaard, N Abi-Chebel. Chem. Eng. Process., 2010, 49(12):1229~1240. 

    9. [9]

       

    10. [10]

      S E John, M Ghadiri. Chem. Eng. J., 2002, 85(2/3):357~368.

    11. [11]

       

    12. [12]

       

    13. [13]

      P Meyer. Chemelectric treating a new phase in the electrical dehydration of oil emulsions//SPE production automation symposium, Hobbs, New Mexico, 16~17 April, 1963.

    14. [14]

      S Less, A Hannisdal, J Sjöblom. J. Disper. Sci. Technol., 2010, 31(3):265~272. 

    15. [15]

       

    16. [16]

      P J Bailes, S K L Larkai. Transac. Inst. Chem. Eng., 1981, 59(4):229~237.

    17. [17]

       

    18. [18]

       

    19. [19]

       

    20. [20]

       

    21. [21]

       

    22. [22]

    23. [23]

       

    24. [24]

      G W Sams, H G Wallace. Field trials scheduled for new compact dehydration technology//OTC 15353 presentation at the 2003 Offshore Technology Conference held in Houston, Texas, USA, 5-8 May, 2003. 

    25. [25]

       

    26. [26]

      H G Wallace, D L Taggart, D R Manen et al. Compact electrostatic separation process//OTC 19531 presentation at the 2008 Offshore Technology Conference held in Houston, Texas, USA, 5-8 May, 2008. 

    27. [27]

       

    28. [28]

      C Noik, J Chen, C Dalmazzone. Electrostatic demulsification on crude oil:a state of the art review//SPE 103808 presented at the International Oil and Gas Conference and Exihibition, Beijing, 5-7 December, 2006. 

    29. [29]

      S Less, R Vilagines. J. Petrol. Sci. Eng., 2012, 81:57~63. 

    30. [30]

       

    31. [31]

       

    32. [32]

       

    33. [33]

       

    34. [34]

       

    35. [35]

       

    36. [36]

       

    37. [37]

       

    38. [38]

       

    39. [39]

       

    40. [40]

       

    41. [41]

       

    42. [42]

       

    43. [43]

       

    44. [44]

       

    45. [45]

      R Fantoft, R Akdim, R Mikkelsen et al. Revolutionizing offshore production by in-line separation technology//SPE 135492 prepared for the 2010 SPE Annual Technical Conference and Exhibition, Florence, Italy, 19-22 September, 2010. 

    46. [46]

       

    47. [47]

      M Chiesa, W Hamid. A holistic solution for compact oil treatment separation systems//SPE 136836 presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 1-4 November, 2010. 

    48. [48]

       

    49. [49]

       

    50. [50]

      M Amarzguioui, P C Jacobsen. Novel use of electro coalescence to enhance, optimize and debottleneck oil separation trains//SPE 174763 presented at the SPE Annual Technical Conference and Exhibition in Houston, Texas, USA, 28-30 September, 2015. 

    51. [51]

       

    52. [52]

       

    53. [53]

      S Less, A Hannisdal, E Bjørklund et al. Fuel, 2008, 87(12):2572~2581. 

    54. [54]

      A A Alqahtani. Vessel Internal Electrostatic Coalescer technology (VIEC)//SPE 156087 presented at the SPE international production and operations conference and exhibition, Doha, Qatar, 14-16 May, 2012. 

    55. [55]

      T A Fjeldly, E B Hansen, P J Nilsen. Novel coalescer technology in first-stage separator enables single-stage separation and heavy-oil separation//OTC 18278 presentation at the 2006 Offshore Technology Conference, Houston, USA, 1-4May, 2006. 

    56. [56]

      O Urdahl, T J Williams, A G Bailey et al. Chem. Eng. Res. Design, 1996, 74(2):158~165.

    57. [57]

      K T Klasson, P A Taylor, J F Walker et al. Sep. Sci. Technol., 2005, 40(1):453~462.

    58. [58]

      P J Bailes, P K Kuipa. Chem. Eng. Sci., 2001, 56(21):6279~6284.

    59. [59]

      J A Melheim, M Chiesa. Chem. Eng. Sci., 2006, 61(14):4540~4549. 

    60. [60]

      A Fernandez. Colloid. Surf. A, 2009, 338(1/3):68~79. 

    61. [61]

      S Mhatre, R Thaokar. Ind. Eng. Chem. Res., 2014, 53(34):13488~13496. 

    62. [62]

       

    63. [63]

       

    64. [64]

       

    65. [65]

    66. [66]

       

  • 加载中
    1. [1]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    2. [2]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    3. [3]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    4. [4]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    5. [5]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    6. [6]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    7. [7]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    8. [8]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    9. [9]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    10. [10]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    13. [13]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    14. [14]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    15. [15]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    16. [16]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    17. [17]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    20. [20]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

Metrics
  • PDF Downloads(23)
  • Abstract views(4029)
  • HTML views(764)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return