Alkali-induced self-assembly Pd/Ni-Mo2C nanocatalyst for ethanol electro-oxidation
- Corresponding author: CHEN Zhao-yang, chenzhy@zjut.edu.cn
Citation:
ZHAO Feng-ming, WU Shi-zhong, CHEN Zhao-yang, CHU You-qun, SHI Mei-qin. Alkali-induced self-assembly Pd/Ni-Mo2C nanocatalyst for ethanol electro-oxidation[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(5): 574-581.
WU T, MA Y, QU Z B, FAN J C, LI Q X, SHI P H, XU Q J, MIN Y L. Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation[J]. ACS Appl Mater Interf, 2019,11:5136-5145. doi: 10.1021/acsami.8b20240
ZHANG H C, SHANG Y Y, ZHAO J, WANG J J. Enhanced electrocatalytic activity of ethanol oxidation reaction on palladium-silver nanoparticles via removable surface ligands[J]. ACS Appl Mater Interf, 2017,9(19):16635-16643. doi: 10.1021/acsami.7b01874
YANG H L, ZHANG X Y, ZOU H, YU Z N, LI S W, SUN J H, CHEN S D, JIN J, MA J T. Palladium nanoparticles anchored on three-dimensional nitrogen-doped carbon nanotubes as a robust electrocatalyst for ethanol oxidation[J]. ACS Sustainable Chem Eng, 2018,6(6):7918-7923. doi: 10.1021/acssuschemeng.8b01157
MARTIN R, JAKUB D, BJOÖRN R, FINN R, DAVID A H, FRANCESCO C, ROBERTO F, JOCHIM S, OLAF M M. Structural reorganization of Pt(111) electrodes by electrochemical oxidation and reduction[J]. J Am Chem Soc, 2017,139(12):4532-4539. doi: 10.1021/jacs.7b01039
MOHAMMAD S A, SEUNGWON J. Electrochemical activity evaluation of chemically damaged carbon nanotube with palladium nanoparticles for ethanol oxidation[J]. J Power Sources, 2015,282:479-488. doi: 10.1016/j.jpowsour.2015.02.072
LEANDRO L C, FLAVIO C, AURO A T. Nickel palladium electrocatalysts for methanol, ethanol, and glycerol oxidation reactions[J]. Int J Hydrogen Energy, 2017,42:16118-16126. doi: 10.1016/j.ijhydene.2017.05.124
RAJESH K, RALUCA S, RAJESH K S, EDNAN J, DINESH P S, VIDHU S T, ALFREDO R V, EVERSON T S G da S, JAQUELINE R M, LAURO T K, STANISLAV A M. Controlled density of defects assisted perforated structure in reduced graphene oxide nanosheets-palladium hybrids for enhanced ethanol electro-oxidation[J]. Carbon, 2017,117:137-146. doi: 10.1016/j.carbon.2017.02.065
LEVY R B, BOUDART M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science, 1973,181(4099):547-549. doi: 10.1126/science.181.4099.547
LIU Y, THOMAS G K, JINGGUANG G C, WILLIAM E M. Metal carbides as alternative electrocatalyst supports[J]. ACS Catal, 2013,3:1184-1194. doi: 10.1021/cs4001249
AKHAIRI M A F, KAMARUDIN S K. Catalysts in direct ethanol fuel cell (DEFC):An overview[J]. Int J Hydrogen Energy, 2016,41:4214-4228. doi: 10.1016/j.ijhydene.2015.12.145
WANG H, SUN C, CAO Y J, ZHU J T, CHEN Y, GUO J, ZHAO J, SUN Y H, ZOU G F. Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions[J]. Carbon, 2017,114:628-634. doi: 10.1016/j.carbon.2016.12.081
LIN L L, SHENG W C, YAO S Y, MA D, JINGGUANG G C. Pt/Mo2C/C-cp as a highly active and stable catalyst for ethanol electrooxidation[J]. J Power Sources, 2017,345:182-189. doi: 10.1016/j.jpowsour.2017.02.001
WAN C, YAGYA N R, BRIAN M L. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction[J]. Angew Chem Int Ed, 2014,53(25):6407-6410. doi: 10.1002/anie.201402998
JAEHO J, YEREUM P, SEUNGHYUK C, JINHEE L, SUNG S L, BYOUNG H L, YOUNG J S, JEONG H C, YUN H J, SUNGJOO L. Epitaxial synthesis of molybdenum carbide and formation of a Mo2C/MoS2 hybrid structure via chemical conversion of molybdenum disulfide[J]. ACS Nano, 2018,12(1):338-346. doi: 10.1021/acsnano.7b06417
ZHONG Z W, LIU N, CHEN H Y, FU X H, YANG L C, GAO Q S. Molybdenum carbide supported by N-doped carbon:Controlled synthesis and application in electrocatalytic hydrogen evolution reaction[J]. Mater Lett, 2016,176:101-105. doi: 10.1016/j.matlet.2016.04.089
MU Y P, ZHANG Y, FANG L, LIU L, ZHANG H J, WANG Y. Controllable synthesis of molybdenum carbide nanoparticles embedded in porous graphitized carbon matrixes as efficient electrocatalyst for hydrogen evolution reaction[J]. Electrochim Acta, 2016,215:357-365. doi: 10.1016/j.electacta.2016.08.104
AYAZ H, VALDECIR A P, ALEJO C, EDSON A T. Molybdenum carbide-based electrocatalysts for CO tolerance in proton exchange membrane fuel cell anodes[J]. Electrochim Acta, 2014,142:307-316. doi: 10.1016/j.electacta.2014.07.142
LIN H L, LIU N, SHI Z P, GUO Y L, TANG Y, GAO Q S. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution[J]. Adv Funct Mater, 2016,26(31):5590-5598. doi: 10.1002/adfm.v26.31
XIONG K, LI L, ZHANG L, DING W, PENG L S, WANG Y, CHEN S G, TAN S Y, WEI Z D. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance[J]. J Mater Chem A, 2015,3:1863-1867. doi: 10.1039/C4TA05686H
XU X B, FARHAT N, WANG X. Ni-Decorated molybdenum carbide hollow structure derived from carbon-coated metal-organic framework for electrocatalytic hydrogen evolution reaction[J]. Chem Mater, 2016,28(17):6313-6320. doi: 10.1021/acs.chemmater.6b02586
SUYLAN L A D, ANDRE L L M, CARLSON P S. Synthesis and characterization of molybdenum carbide doped with nickel[J]. Mater Chem Phys, 2018,216:243-249. doi: 10.1016/j.matchemphys.2018.05.074
TEODÓRA N K, DÁVID H, ALEX L A DE L, IMRE M S. Thermal decomposition of ammonium molybdates[J]. J Therm Anal Calorim, 2016,124(2):1013-1021. doi: 10.1007/s10973-015-5201-0
CUI G F, SHEN P K, MENG H, ZHAO J, WU G. Tungsten carbide as supports for Pt electrocatalysts with improved CO tolerance in methanol oxidation[J]. J Power Sources, 2011,196(15):6125-6130. doi: 10.1016/j.jpowsour.2011.03.042
MA C A, CHEN Z Y, ZHAO F M. Synthesis of ultrafine mesoporous tungsten carbide by high-energy ball milling and its electrocatalytic activity for methanol oxidation[J]. Chin J Chem, 2011,29:611-616. doi: 10.1002/cjoc.v29.4
XU L J, DU J J, TANG J X, ZHANG J D. Electrochemical behavior of electrodeposited Ni-Cr alloys[J]. Mater Prot, 2008,41(2):23-25.
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
Zhuo Li , Peng Yu , Di Shen , Xinxin Zhang , Zhijian Liang , Baoluo Wang , Lei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Zhenkang Ai , Hui Chen , Xuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Shuai Zhu , Mingjie Chen , Haichao Shen , Hanming Ding , Wenbo Li , Junliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879
Yunqiang Li , Yongxian Huang , Sinuo Li , He Huang , Zhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051
Zhao Gu , Yunhui Yang , Song Ye , Congyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334
Dan Shao , Yujing Lyu , Chengyuan Liu , Hao Wang , Ning Ma , Hao Xu , Wei Yan , Xiaohua Jia , Haojie Song . Attracting magnetic BDD particles onto Ti/RuO2-IrO2 by using a magnet: A novel 2.5-dimensional electrode for electrochemical oxidation wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110641-. doi: 10.1016/j.cclet.2024.110641
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Qiang Wu , Baofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089
Shaobin He , Xiaoyun Guo , Qionghua Zheng , Huanran Shen , Yuan Xu , Fenglin Lin , Jincheng Chen , Haohua Deng , Yiming Zeng , Wei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096
Fan Chen , Xiaoyu Zhao , Weihang Miao , Yingying Li , Ye Yuan , Lingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239
Hui Yang , Guangxun Zhang , Yueyao Sun , Huijie Zhou , Huan Pang . Bimetallic zeolitic imidazolate framework derived hollow layered double hydroxide with tailorable interlayer spacing for nickel-zinc batteries. Chinese Chemical Letters, 2025, 36(6): 110016-. doi: 10.1016/j.cclet.2024.110016
Ajay Piriya Vijaya Kumar Saroja , Yuhan Wu , Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408
Ke Zhang , Sheng Zuo , Pengyuan You , Tong Ru , Fen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157