Citation: LIU He, WANG Zong-xian, ZHAO Xiang-kun, LI Yu-xing, CHEN Kun, GUO Ai-jun. Partial upgrading of vacuum residue from Canadian oil sand bitumen under CO/H2-H2O[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 45-53. shu

Partial upgrading of vacuum residue from Canadian oil sand bitumen under CO/H2-H2O

  • Corresponding author: WANG Zong-xian, zxwang@upc.edu.cn
  • Received Date: 27 September 2017
    Revised Date: 1 December 2017

    Fund Project: Provincial Natural Science Foundation of Shandong ZR2017BB021China National Petroleum Corporation CNPC, PRIKY16066The project was supported by National Natural Science Foundation of China (21776313), the China Postdoctoral Science Foundation (2016M602219), Provincial Natural Science Foundation of Shandong (ZR2017BB021), Qingdao Postdoctoral Applied Research Project (2016224), State Key Laboratory of Heavy Oil Processing (SLKZZ-2017003, SLKZZ-2017011), Key Research and Development Plan of Shandong Province (2017GGX70108), Fundamental Research Funds for the Central Universities (Special Projects, 17CX05016), PetroChina Innovation Foundation (2017D-5007-0506), China National Petroleum Corporation (CNPC, PRIKY16066) and Shandong Postdoctoral Funded Project (201702028)State Key Laboratory of Heavy Oil Processing SLKZZ-2017003Shandong Postdoctoral Funded Project 201702028the China Postdoctoral Science Foundation 2016M602219National Natural Science Foundation of China 21776313Qingdao Postdoctoral Applied Research Project 2016224PetroChina Innovation Foundation 2017D-5007-0506State Key Laboratory of Heavy Oil Processing SLKZZ-2017011Fundamental Research Funds for the Central Universities Special Projects, 17CX05016Key Research and Development Plan of Shandong Province 2017GGX70108

Figures(6)

  • The upgrading of the vacuum residue from Canadian oil sand bitumen was performed in a batch reactor with the syngas (CO/H2) and H2O. The effect of CO/H2-H2O for residue upgrading was verified. In the presence of CO/H2-H2O, the coke induction period is postponed by 3.5-6.5 min. When the coke yield is about 0.1%, the viscosity reduction efficiency can be raised by 29.1% at 410℃ and even 54.6% at 420℃. The upgrading experiments were also carried out in the presence of N2-H2O, CO-H2O, and H2-H2O, respectively. The results show that the capability to inhibit the coke formation was in the order of H2-H2O > CO/H2-H2O > CO-H2O > N2-H2O. The impetus of CO/H2-H2O to BVR upgrading could be attributed to the active hydrogen mainly from H2, nascent hydrogen by water-gas shift reaction as well as aqua-thermolysis. The thermal conditions such as the pressure of syngas, water content and reaction temperature could influence the coking propensity of BVR under CO/H2-H2O by affecting the three different attributions. These results indicate that the more accessible and low-cost syngas could provide the necessary hydrogen for BVR upgrading. Water presents a synergism with syngas for further promoting the BVR upgrading process.
  • 加载中
    1. [1]

      LI Zhen-yu, QIAO Ming, Ren Wen-po. Current development of venezuela extra heavy crude and canadian oil sands processing[J]. Acta Pet Sin (Pet Process Sect), 2012,28(3):517-524.  

    2. [2]

      YIN Jia-yin, TANG Bao-jun. Analysis of influencing factors of China oil security from oil imports[J]. Energy China, 2016,38(11):29-33. doi: 10.3969/j.issn.1003-2355.2016.11.006

    3. [3]

      BORDEN K. The challenges of processing and transporting heavy crude[J]. Oil Gas Facil, 2015,2(5):22-26.  

    4. [4]

      SANTOS R G, LOH W, BANNWART A C, TREVISAN O V. An overview of heavy oil properties and its recovery and transportation methods[J]. Braz J Chem Eng, 2014,31(3):571-590. doi: 10.1590/0104-6632.20140313s00001853

    5. [5]

      WANG Qi, WANG Zong-xian, MU Bao-quan, GUO Ai-jun, GUO Kai-li. Hydrogen donor visbreaking of Venezuelan atmospheric residue[J]. J Fuel Chem Technol, 2012,40(10):1200-1205. doi: 10.3969/j.issn.0253-2409.2012.10.008 

    6. [6]

      ZHANG N, ZHAO S, SUN X, XU Z, XU C. Storage stability of the visbreaking product from venezuela heavy oil[J]. Energy Fuels, 2010,24(7):3970-3976. doi: 10.1021/ef100272e

    7. [7]

      WANG Qi, GUO Lei, WANG Zong-xian, MU Bao-quan, GUO Ai-jun, LIU He. Hydrogen donor visbreaking of venezuelan vacuum residue[J]. J Fuel Chem Technol, 2012,40(11):1317-1322. doi: 10.3969/j.issn.0253-2409.2012.11.006 

    8. [8]

      TAKATUKA T, WADA Y, FUKUI Y, KOMATSU S, SHIMIZU S. VisABC process[C]//Heavy Oil and Oil Sands Technical Symposium, Calgary, Canada, 1988.

    9. [9]

      FENG Wan-lu, WU Shi-yong, YOU Quan, WU You-qing, ZHENG Hua-an, MIN Xiao-jian. Effect of moisture amount on liquefaction of Xinlinhaote coal under syngas[J]. J East China Univ Sci Technol (Nat Sci Ed), 2017,43(2):156-161.  

    10. [10]

      XIONG Qi, QIAO Jian-chao, HAN Ju-hong, SHENG Qing-tao, SHEN Jun. Study on direct coal liquefaction in non-pure hydrogen atmosphere[J]. Coal Chem Ind, 2013,41(5):21-24.  

    11. [11]

      YUAN Ming-jiang, ZHAO Suo-qi, YAN Dong-ju. An analysis of coke and dispersed catalysts in slurry-bed hydrocracking using syngas as hydrogen source[J]. Pet Process Petrochem, 2010,41(10):52-57. doi: 10.3969/j.issn.1005-2399.2010.10.010

    12. [12]

      WANG Gang, LI Wen, YI Yue-tao, XUE Qin-zhao, LI Bao-qing. Experimental study on high-pressure liquefaction of biomass in H2 and syngas[J]. J Fuel Chem Technol, 2008,36(5):563-569.  

    13. [13]

      XU Y, YUAN M, ZHAO S, XU C. Upgrading heavy oil using syngas as the hydrogen source with dispersed catalysts[J]. Pet Sci Technol, 2009,27(7):712-732. doi: 10.1080/10916460802105641

    14. [14]

      YAN D, YUAN M, SUN X, ZHAO S. A Fundamental research for upgrading heavy oil using syngas as hydrogen source[C]//Proceedings of 1st world heavy oil conference, 2006, 930-941.

    15. [15]

      HOOK B D, AKGERMAN A. Desulfurization of dibenzothiophene by in-situ hydrogen generation through a water gas shift reaction[J]. Ind Eng Chem Process Des Dev, 1986,25(25):278-284.  

    16. [16]

      LIU C, NG F T T. HDS of DBT using in situ generated hydrogen in the presence of dispersed Mo catalysts Ⅱ. Comparison between in situ hydrogen and molecular H2[J]. Chin J Catal, 1999,20(5):597-59.  

    17. [17]

      NG F T T, TSAKIRI S K. Activation of water in emulsion for catalytic desulphurization of benzothiophene[J]. Fuel, 1992,71(11):1309-1314. doi: 10.1016/0016-2361(92)90059-W

    18. [18]

      ALGHAMDI A. Hydrodesulphurization of light gas oil using hydrogen from the water gas shift reaction[D]. Waterloo:University of Waterloo, 2009.

    19. [19]

      LIU K. Hydrodesulfurization and hydrodenitrogenation of model, compounds using in-situ hydrogen over nano-dispersed, Mo sulfide based catalysts[D]. Waterloo:University of Waterloo, 2010.

    20. [20]

      JIA L. Oil sands bitumen emulsion upgrading by using in situ hydrogen generated through the water gas shift reaction[D]. Waterloo:University of Waterloo, 2014.

    21. [21]

      CHOY C. Naphthalene hydrogenation with water gas shift in model oil/water emulsion slurry over molybdenum sulfide[D]. Waterloo:University of Waterloo, 2009.

    22. [22]

      ARAI K, TADAFUMI ADSCHIRI A, WATANABE M. Hydrogenation of hydrocarbons through partial oxidation in supercritical water[J]. Ind Eng Chem Res, 2000,39(12):4697-4701. doi: 10.1021/ie000326g

    23. [23]

      SATO T, SUMITA T, ITOH N. Effect of CO addition on upgrading bitumen in supercritical water[J]. J Supercrit Fluids, 2015,104:171-176. doi: 10.1016/j.supflu.2015.06.004

    24. [24]

      YUAN P Q, CHENG Z M, JIANG W L, ZHANG R, YUAN W K. Catalytic desulfurization of residual oil through partial oxidation in supercritical water[J]. J Supercrit Fluids, 2005,35(1):70-75. doi: 10.1016/j.supflu.2004.11.002

    25. [25]

      CHENG Jian, LIU Yi-hong, LUO Yun-hua, LIU Guo-xiang, QUE Guo-he. Hydrocracking of Gudao residual oil in suspended bed using supercritical water-syngas as hydrogen source Ⅰ. The effect of catalyst on hydrocracking[J]. J Fuel Chem Technol, 2003,31(6):574-578.  

    26. [26]

      CHENG Jian, LI Jing, LIU Yi-hong, LUO Yun-hua, LIU Guo-xiang, QUE Guo-he. Gudao residual oil hydrocracking with dispersed catalysts using supercritical water-syngas as hydrogen source Ⅱ. The comparison of residue hydrocracking using different hydrogen sources[J]. J Fuel Chem Technol, 2004,32(2):180-184.  

    27. [27]

      ZHANG Long-li, ZHANG Shi-jie, YANG Guo-hua, JIANG Yun, QUE Guo-he. Colloid stability of atmospheric residual oil during thermal reaction[J]. Acta Pet Sin (Pet Process Sect), 2003,19(2):82-87.  

    28. [28]

      ZHANG Long-li, YANG Guo-hua, QUE Guo-he, YANG Chao-he, SHAN Hong-hong. Colloidal stability variation of Dagang atmosphere residue during thermal reaction under nitrogen or hydrogen[J]. J Fuel Chem Technol, 2011,39(9):682-688.  

    29. [29]

      GUO Ai-jun, XUE Peng, CHEN Jian-tao, WANG Zong-xian. Study on application of hydrogen donor in visbreaking of ultra-heavy oil[J]. Pet Refin Eng, 2013,43(5):28-32.  

    30. [30]

      MURAZA O, GALADIMA A. Aquathermolysis of heavy oil:A review and perspective on catalyst development[J]. Fuel, 2015,157:219-231. doi: 10.1016/j.fuel.2015.04.065

    31. [31]

      WU Chuan, LEI Guang-lun, YAO Chuan-jin, GAI Ping-yuan, CAO Yan-bin, LI Xiao-nan. Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst[J]. J Fuel Chem Technol, 2010,38(6):684-690.  

    32. [32]

      FAN Ze-xia, ZHAO Fu-lin, WANG Jie-xiang, GONG Yong-gang. Upgrading and viscosity reduction of super heavy oil by aqua-thermolysis with hydrogen donor[J]. J Fuel Chem Technol, 2006,34(3):315-318.  

  • 加载中
    1. [1]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    8. [8]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    9. [9]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    15. [15]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    16. [16]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(15)
  • Abstract views(805)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return