Citation: ZHAO Ning, LIU Dong, GUO Zhong-shan, ZHOU Jia-shun, GONG Xin, YU Ran, WANG Feng. Investigation on transferring and release characteristics of chlorine during pyrolysis of low rank coal[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1032-1041. shu

Investigation on transferring and release characteristics of chlorine during pyrolysis of low rank coal

  • Corresponding author: LIU Dong, liudong@upc.edu.cn
  • Received Date: 23 April 2019
    Revised Date: 12 June 2019

    Fund Project: The project was supported by the National Key Research and Development Project of China (2017YFB0602500)the National Key Research and Development Project of China 2017YFB0602500

Figures(12)

  • In order to reveal the release mechanism of chlorine(Cl) in low rank coal during pyrolysis process, a low rank coal from northern Shaanxi was pyrolyzed at different temperatures, particle sizes and heating rates in a tubular reactor and a Thermo Gravimetric-Infrared-Mass spectrometry (TG-IR-MS) to investigate the transferring and release characteristics of Cl during pyrolysis process. The dynamic model of Cl transferring and release was built based on the process of coal pyrolysis. The results show that the chloric species from the pyrolysis of low rank coal is HCl and little Cl2, and the temperature strongly influences the release rate of Cl during pyrolysis in the tubular reactor. With the pyrolysis temperature increasing from 300 to 800 ℃, the release rate of Cl increases significantly, reaching to 49.5% at 800 ℃, while the fraction of Cl in the char decreases and the fraction of Cl in coal tar and pyrolysis gas increases gradually. The release rate of Cl has a maximum of 35.8% as the particle size is 3.0-4.0 mm. The particle size also affects the distribution of Cl in pyrolysis products. Moreover, increasing the heating rate is beneficial to the devolatilization, and the release rate of Cl in coal changes obviously as the heating rate is 15-25 ℃/min, but much higher heating rate will result in the decrease of the release rate of Cl in coal. Most Cl species in the coal tar is in form of water-soluble inorganic chlorides, and therefore the ultrapure water can present a better performance to remove chlorides. The release activation energy of chlorine in pyrolysis is about 20 kJ/mol.
  • 加载中
    1. [1]

      XIE Ming-jun, WANG Hui, CHEN Tuo-qi, BAI Jing. Explore and analyse of accelerate Shaanxi Yulin coal industry development strategy[J]. Coal Min Technol, 2018,23(4):101-104.  

    2. [2]

      SHEN Tao, LIN Ping-xuan, ZHANG Xiao-tuan, ZHANG Hong-qiang. Northern shaanxi energy chemical industry base resource characteristics and environmental bearing capacity[J]. Coal Geol China, 2015,27(10):37-40. doi: 10.3969/j.issn.1674-1803.2015.10.09

    3. [3]

      SHANG Jian-xuan, WANG Li-jie, GAN Jian-ping. Prospect of the shanbei comprehensive coal grading utilization technology[J]. Coal Convers, 2011,34(1):92-96. doi: 10.3969/j.issn.1004-4248.2011.01.020

    4. [4]

      PAN Sheng-jie, CHEN Jian-yu, FAN Fei, LI Peng-fei. Present situation analysis and prospect of low rank coal quality-based utilization conversion route[J]. Clean Coal Technol, 2017,23(5):7-12.

    5. [5]

      WAND Xiang-hui, MEN Zhuo-wu, XU Ming, WENG Li, LIU Ke. Research status and development proposals on pyrolysis techniques of low rank pulverized coal[J]. Clean Coal Technol, 2014,20(6):36-41.  

    6. [6]

      XU Xu. Study on formation mechanism and emission characteristics of poly-chlorinated dibenzo-p-dioxins and polychlorinated dibenzofrans in combustion process[D]. Hangzhou: Zhejiang University, 2002. 

    7. [7]

      JIANG Ying. Distribution and classification standard of chlorine in Chinese coal[J]. Coal Qual Technol, 1998(5):7-8.  

    8. [8]

      LI Han-xu, PAN Wei-ping, Charles Li. The effect of chlorine in coal on the evolution of HCl during comlustion by TGA-MS[J]. J Anhui Univ Sci Technol, 2000,20(1):30-34. doi: 10.3969/j.issn.1672-1098.2000.01.007

    9. [9]

      WANG X, SI J, TAN H, MA L, POURKASHANIAN M, XU T. Nitrogen, sulfur, and chlorine transformations during the pyrolysis of straw[J]. Energy Fuels, 2010,24(9):5215-5221. doi: 10.1021/ef1007215

    10. [10]

      YUDOVICH Y E, KETRIS M P. Chlorine in coal:A review[J]. Int J Coal Geol, 2006,67(1/2):127-144.

    11. [11]

      SHAO D, HUTCHINSON E J, CAO H, PAN W P, CHOU C L. Behavior of chlorine during coal pyrolysis[J]. Energy Fuels, 1994,8(2):399-401. doi: 10.1021/ef00044a017

    12. [12]

      RAHIM M U, GAO X, GARCIA-PEREZ M, LI Y, WU H. Release of chlorine during mallee bark pyrolysis[J]. Energy Fuels, 2013,27(1):310-317. doi: 10.1021/ef3018157

    13. [13]

      FRIGGE L, STROHLE J, EPPLE B. Release of sulfur and chlorine gas species during coal combustion and pyrolysis in an entrained flow reactor[J]. Fuel, 2017,201(1):105-110.  

    14. [14]

      LI Zhen, LIU Ze-chang, ZHAO Ying, SHI Yu-miao. Study on chlorine emission character in coal pyrolysis process and absorption model establishment of chlorine occurrence in coal[J]. Clean Coal Technol, 2005,11(4):51-55. doi: 10.3969/j.issn.1006-6772.2005.04.013

    15. [15]

      WANG Jing-ping, ZHANG De-xiang, GAO Jin-sheng. Chlorine removal on the process of coal pyrolysis[J]. J China Coal Soc, 2002,27(4):402-405. doi: 10.3321/j.issn:0253-9993.2002.04.015

    16. [16]

      WANG Jing-ping, ZHANG De-xiang, GAO Jin-sheng. Pyrolysis pemoval of chlorine in coal under different gas atmosoheres[J]. Coal Convers, 2003,26(2):29-33. doi: 10.3969/j.issn.1004-4248.2003.02.006

    17. [17]

      WANG Jing-ping, ZHANG De-xiang, GAO Jin-sheng, SONG Yong-xin. Building of chlorine removal model on process of coal pyrolysis[J]. J Fuel Chem Technol, 2003,31(1):27-30. doi: 10.3969/j.issn.0253-2409.2003.01.006

    18. [18]

      ZHANG Shu-hui, LIU Xiao-jie, LV Qing, ZHANG Shu-qing. Chlorine precipitation characteristics during the combustion process of pulverized coal injection used in blast furnace[J]. J China Coal Soc, 2015,40(S1):216-221.

    19. [19]

      TSUBOUCHI N, SAITO T, OHTAKA N, OHTSUKA Y. Evolution of hydrogen chloride and change in the chlorine functionality during pyrolysis of argonne premium coal samples[J]. Energy Fuels, 2013,27(1):87-96. doi: 10.1021/ef3014234

    20. [20]

      TSUBOUCHI N, SAITO T, OHTAKA N, NAKAZATO Y, OHTSUKA Y. Chlorine release during fixed-bed gasification of coal chars with carbon dioxide[J]. Energy Fuels, 2013,27(9):5076-5082. doi: 10.1021/ef401307n

    21. [21]

      YANG De-feng, HE Pei-qing, WANG Shu-qin. Research and application of analytical methods for chlorine content in crude oil[J]. Pet Proc Petrochem, 2010,41(4):31-35. doi: 10.3969/j.issn.1005-2399.2010.04.007

    22. [22]

      HUGGINS F E, HUFFMAN G P. Chlorine in coal:An XAFS spectroscopic investigation[J]. Fuel, 1995,74(4):556-569. doi: 10.1016/0016-2361(95)98359-M

    23. [23]

      JIANG Xu-guang, XU Xu, YAN Jian-hua, CHI Yong, CEN Ke-fa. Experimental research of chlorine distribution properties in Chinese coal[J]. Coal Convers, 2001,24(2):58-61. doi: 10.3969/j.issn.1004-4248.2001.02.012

    24. [24]

      LEI Ming, LÜ Kai-wen, WANG Chun-bo, YAN Wei-ping, WANG Song-ling. Investigation on sulfur, chlorine and fluorine releasing characteristics during pressurized oxy-fuel combustion of Datong bituminous coal[J]. J Fuel Chem Technol, 2014,42(9):1053-1059. doi: 10.3969/j.issn.0253-2409.2014.09.005

    25. [25]

      SOLOMON P R, FLETCHER T H, PUGMIRE R J. Progress in coal pyrolysis[J]. Fuel, 1993,72(5):587-597. doi: 10.1016/0016-2361(93)90570-R

    26. [26]

      ZHU Xue-dong, ZHU Zi-bin, HAN Chun-jia, TANG Li-hua. Fundamental study of coal pyrolysis Ⅲ functional group and pyrolysis products[J]. J East China Univ Sci Technol(Nat Sci), 2000,26(1):14-17. doi: 10.3969/j.issn.1006-3080.2000.01.004

    27. [27]

      TSUBOUCHI N, SAITO T, OHTAKA N, OHTSUKA Y. Evolution of hydrogen chloride and change in the chlorine functionality during pyrolysis of argonne premium coal samples[J]. Energy Fuels, 2013,27(1):87-96. doi: 10.1021/ef3014234

    28. [28]

      ZHAO Yin, LIU Xiao-ming, LI Min, LIU Ze-chang. Progress of study on release characteristics and removal technology of chlorine in caol during coal combustion and pyrolysis[J]. J Shandong Univ Sci Technol (Nat Sci), 2004,23(2):108-111. doi: 10.3969/j.issn.1672-3767.2004.02.034

    29. [29]

      TSUBOUCHI N, OHTSUKA S, HASHIMOTO H, OHTSUKA Y. Several distinct types of HCl evolution during temperature-programmed pyrolysis of high-rank coals with almost the same carbon contents[J]. Energy Fuels, 2004,18(5):1605-1606. doi: 10.1021/ef040003n

    30. [30]

      WANG Xue-bin, WANG Xin-ming, XU Shan, XU Wei-guang, TAN Hou-zhang. Release characteristics of N/S/Cl species during pyrolysis of biomass and coal[J]. J China Coal Soc, 2012,37(S2):426-431.  

    31. [31]

      LI Yang, ZHANG Jun-ying, ZHAO Yun-chun, WU You-Qing, GAO Jin-sheng, ZHENG Chu-guang. Influence of pyrolysis conditions on volatility of trace elements in coals[J]. J Eng Thermophys, 2007,28(S2):189-192.  

    32. [32]

      CUI L J, LIN W G, YAO J Z. Influences of temperature and coal particle size on the flash pyrolysis of coal in a fast-entrained bed[J]. Chem Res Chin Univ, 2006,22(1):103-110. doi: 10.1016/S1005-9040(06)60056-1

    33. [33]

      LV Tai, ZHANG Cui-zhen, WU Chao. Study on the effect of coal diameter and heating rate on the coal pyrolysis[J]. Coal Convers, 2005,28(1):17-20. doi: 10.3969/j.issn.1004-4248.2005.01.004

    34. [34]

      LI Han-xu. The emission of chlorine during coal combustion by TGA-FTIR[J]. Coal Convers, 1996,19(3):40-50.

    35. [35]

      LI Han-xu, PAN Wei-ping, YANG Xiao-dong, NAPIER J, RILEY J T. The effect of coal ranks and particle sizes on the evolution of chlorine during coal combustion[J]. Coal Convers, 1997,20(2):67-74.

    36. [36]

      JIANG Xu-ming, YANG Hai-ping, LIU Hui, ZHENG Chu-guang, LIU De-chang. Analysis of the effect of coal powder granularity on combustion characteristics by thermogravimetry[J]. Proc Chin Soc Electric Eng, 2002(12):143-146+161.

    37. [37]

      LI Zhen, LIU Ze-chang, ZHOU Li-xia. Occurrence mode and concentration of chlorine in liquid product from co-pyrolysis of waste plastic and coal[J]. J Fuel Chem Technol, 2009,37(4):405-409. doi: 10.3969/j.issn.0253-2409.2009.04.004

    38. [38]

      ZHANG Yu-hong. The study of the migratory characteristics of sulfur, fluorine, chlorinr, mercury, arsenic in barmetric pyrolysis of coals[D]. Beijing: CCRI, 2004. 

    39. [39]

      COOPER B R, ELLINGSON W A. The Science and Technology of Coal and Coal Utilization[M]. NewYork:Plenum Press, 1984.

    40. [40]

      ZHANG Cui-zhen, YI Xiao-qing, LIU Liang. Study on pyrolysis characteristics and kinetics of coal pyrolysis[J]. Therm Power Gen, 2006,35(4):17-20. doi: 10.3969/j.issn.1002-3364.2006.04.006

    41. [41]

      YANG Jing-biao, ZHANG Yan-wen, CAI Ning-sheng. A comparison of a single reaction model with a distributed activation energy one based on coal pyrolysis kinetics[J]. J Eng Therm Energy Power, 2010,25(3):301-305.  

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(11)
  • Abstract views(1046)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return