Citation: LIU Jing-chao, ZHAO Yong-chun, HE Yong-lai, JI Yu-shan, CUI Xiang-zheng, XIAO Ri-hong, ZHANG Jun-ying, ZHENG Chu-guang. Experimental research on the control of heavy metal emissions from 330 MW coal-fired unit by heterogeneous agglomeration[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1386-1393. shu

Experimental research on the control of heavy metal emissions from 330 MW coal-fired unit by heterogeneous agglomeration

  • Corresponding author: ZHAO Yong-chun, yczhao@hust.edu.cn
  • Received Date: 10 September 2020
    Revised Date: 8 October 2020

    Fund Project: National Key Research and Development Program 2018YFB0605104Hubei Province Key Research and Development Program 2020BCA076The project was supported by National Key Research and Development Program (2018YFB0605104) and Hubei Province Key Research and Development Program (2020BCA076) Project

Figures(11)

  • In order to investigate the influence of spraying the agglomeration adsorbent on the removal efficiency of fine particles and heavy metals, the sampling and tests on particles and heavy metals were carried out before and after the dedusters and the desulfurization towers in the Unit 1 of a power plant in Hubei Province with a capacity of 330 MW and equipped with a double-chamber four-electric-field electrostatic precipitator. The test results show that after spraying the agglomeration adsorbent in the flue, the proportion of the particulate heavy metals at the ESP inlet increases, the Se element increasing significantly in PM2.5 and PM10, while the heavy metal content in the gas phase decreases, indicating that the agglomeration adsorbent can improve the coagulation efficiency of particulate heavy metals, leading to the small particulate and heavy metals in gas phase being transferred to large particulates. In gypsum, the content of heavy metals is significantly reduced after agglomeration, indicating that heavy metals can join the desulfurized gypsum. Also, the heterogeneous agglomeration enhances the effect of ESP on the removal of heavy metals. At the point before final discharge to the chimney, there is a significant decrease in the content of heavy metals compared with the non-agglomerated condition, which indicates that the heavy metals discharged into the atmosphere after agglomeration are significantly reduced, and the heterogeneous agglomeration plays a key role in the control of heavy metals.
  • 加载中
    1. [1]

      International Energy Agency (IEA). World Energy Outlook 2018[M].Paris: OECD Publishing, 2018

    2. [2]

      GUO Xin-biao, WEI Hong-ying. Research progress on the impact of atmospheric PM2.5 on health[J]. Sci Bull, 2013,58(13):1171-1177.  

    3. [3]

      FU Gao-ping. Research on the formation mechanism of fine particulate matter (PM2.5) in Chengdu and its harm to human health[D]. Chengdu: Southwest Jiaotong University, 2014.

    4. [4]

      NEAS L M. Fine particulate matter and cardiovascular disease[J]. Fuel Process Technol, 2000,65-66:55-67.  

    5. [5]

      PUI D Y H, CHEN S C, ZUO Z L. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014,13:1-26.  

    6. [6]

      CHEN G Y, SUN Y N, WANG Q, YAN B B, CHENG Z J, MA W C. Partitioning of trace elements in coal combustion products: A comparative study of different applications in China[J]. Fuel, 2019,240:31-39.  

    7. [7]

      ZHOU C C, LIU G J, WU D, FANG T, WANG R W, FAN X. Mobility behavior and environmental implications of trace elements associated with coal gangue: A case study at the Huainan Coalfield in China[J]. Chemosphere, 2014,95:193-199.  

    8. [8]

      HUA Wei, SUN He-tai, QI Jian-min, HUANG Zhi-jun, SHI Zhi-peng, DUAN Lun-bo. Heavy metal lead and arsenic emission characteristics of ultra-low emission units in coal-fired power plants[J]. Therm Power Gener, 2019,48(10):65-70.  

    9. [9]

      WEI F, ZHANG J Y, ZHENG C G. Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion[J]. J Environ Sci, 2005,17(2):335-339.  

    10. [10]

      LI H L, ZHANG J Y, ZHAO Y C, WU C Y, ZHENG C G. Wettability of fly ashes from four coal-fired power plants in China[J]. Ind Eng Chem Res, 2011,50(13):7763-7771.  

    11. [11]

      LI Zhi-chao, DUAN Yu-feng, WANG Yun-jun, HUANG Zhi-jun, MENG Su-li, SHEN Jie-zhong. The removal characteristics of flue gas mercury by ESP and WFGD in 300 MW coal-fired power plants[J]. J Fuel Chem Technol, 2013,41(4):491-498.  

    12. [12]

      LI Hai-long, ZHANG Jun-ying, ZHAO Yong-chun, ZHANG Kai, ZHANG Li-qi, ZHENG Chu-guang. Study on the physical and chemical properties of coal-fired fly ash and its wetting mechanism[J]. J Eng Thermophys, 2009,30(9):1597-1600.  

    13. [13]

      WEI Feng. Research on the formation and agglomeration mechanism of coal-fired sub-micron particles[D]. Wuhan: Huazhong University of Science and Technology, 2005.

    14. [14]

      RAJNIAK P, STEPANEK F, DHANASEKHARAN K, FAN R, MANCINELLI C, CHERN R T. A combined experimental and computational study of wet granulation in a Wurster fluid bed granulator[J]. Powder Technol, 2009,189(2):190-201.  

    15. [15]

      HU B, YI Y, LIANG C, YUAN Z L, ROSZAK S, YANG L J. Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators[J]. Powder Technol, 2018,335:186-194.  

    16. [16]

      GUO Yi-quan, ZHAO Yong-chun, LI Gao-lei, ZHANG Jun-ying. Research on enhanced fly ash fine particulate emission control by chemical agglomeration of 300MW coal-fired power stations[J]. Proc CSEE, 2019,39(3):754-763.  

    17. [17]

      GUO Y Q, ZHANG J Y, ZHAO Y C, WANG S L, JIANG C, ZHENG C G. Chemical agglomeration of fine particles in coal combustion flue gas: Experimental evaluation[J]. Fuel, 2017,3:557-569.  

    18. [18]

      VIEBKE C, PICULELL , NILSSON S. On the mechanism of gelation of helix-forming biopolymers[J]. Macromolecules, 1994,27(15):4160-4166.  

    19. [19]

      ZHANG Kai. Numerical simulation study on the micro-aggregation mechanism of ultrafine particles[D]. Wuhan: Huazhong University of Science and Technology, 2009.

    20. [20]

      LINAK W, WENDT J. Toxic metal emissions from incineration-mechanisms and control[J]. Prog Energy Combust Sci, 1993,19(2):145-185.  

    21. [21]

      QI Qian-qian. Research on the distribution of heavy metals in Xinjiang coal-fired power plants and mercury emissions from natural gas boilers[D]. Xinjiang: Xinjiang Normal University, 2015.

    22. [22]

      LI Jing-wei. Experimental study on the emission characteristics of condensable particulate matter and typical organic pollutants in coal-fired flue gas[D]. Zhejiang: Zhejiang University, 2018.

    23. [23]

      ZHAO S L, DUAN Y F, LU J C, GUPTA R, PUDASAINEE D, LIU S, LIU M. Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants[J]. Fuel, 2018,232:463-469.  

    24. [24]

      ZHANG Kai-hua, ZHANG Kai, PAN Wei-ping. Research on arsenic and mercury emission characteristics of 300MW coal-fired power station[J]. J Fuel Chem Technol, 2013,41(7):839-844.  

  • 加载中
    1. [1]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    2. [2]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    3. [3]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    4. [4]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    5. [5]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    15. [15]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    16. [16]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    20. [20]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

Metrics
  • PDF Downloads(2)
  • Abstract views(213)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return