Citation: LI Chang-lun, WANG Yong-gang, LIN Xiong-chao, TIAN Zhen, WU Xin, YANG Yuan-ping, ZHANG Hai-yong, XU De-ping. Influence of inherent minerals on CO2 gasification of a lignite with high ash content[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 780-788. shu

Influence of inherent minerals on CO2 gasification of a lignite with high ash content

  • Corresponding author: WANG Yong-gang, wyg1960@126.com
  • Received Date: 13 February 2017
    Revised Date: 7 May 2017

    Fund Project: the Plan of National Science and Technology Support 2012BAA04B02the National Natural Science Foundation of China 21406261

Figures(9)

  • Lignite samples with different ash contents and mineral composition were prepared by dry separation and acid washing. A drop tube reactor and thermogravimetric analyzer were used to study effect of inherent minerals on CO2 gasification reaction of lignite at 1 000-1 200 ℃. The results show that the inherent minerals have positive effects on gasification, which are temperature sensitive. At lower gasification temperature (1 000 ℃) the inherent minerals can improve carbon conversion indirectly by obstructing the carbon structure order of nascent char. At higher temperatures (1 100-1 200 ℃)the inherent minerals can improve carbon conversion by catalyzing nascent char gasification directly. The alkaline index is not suitable for characterizing role of the inherent minerals of lignite in this case. Ca leads to the difference in catalytic activity of the inherent minerals where the most active form is carboxylate. Various catalytic mechanisms are the root cause of different catalytic activity of Ca in different chemical forms. Ca in the form of carboxylate can reduce the activation energy of coal/char gasification reaction, while CaO only promotes the apparent frequency factor.
  • 加载中
    1. [1]

      WANG Fu-chen, YU Gang-suo, GONG Xin, LIU Hai-feng, WANG Yi-fei, LIANG Qin-feng. Research and development of large-scale coal gasification technology[J]. Chem Ind Eng Prog, 2009,28(2):173-180.  

    2. [2]

      DAI He-wu, DU Ming-hua, XIE Ke-yu, WANG Wei-li. Low ash lignite resources in China and its optimization and utilization[J]. China Coal, 2001,27(2):14-18.  

    3. [3]

      CORELLA J, TOLEDO J M, MOLINA G. Steam gasification of coal at low-medium (600-800 degrees C) temperature with simultaneous CO2 capture in fluidized bed at atmospheric pressure:The effect of inorganic species. 1. Literature review and comments[J]. Ind Eng Chem Res, 2006,45(18):6137-6146. doi: 10.1021/ie0602658

    4. [4]

      QUYN D M, WU H, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003,82(5):587-593. doi: 10.1016/S0016-2361(02)00323-X

    5. [5]

      ZHANG F, XU D P, WANG Y G, WANG Y, GAO Y, POPA T, FAN M H. Catalytic CO2 gasification of a Powder River Basin coal[J]. Fuel Process Technol, 2015,130:107-116. doi: 10.1016/j.fuproc.2014.09.028

    6. [6]

      ZHANG F, XU D, WANG Y, ARGYLE M D, FAN M. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst[J]. Appl Energy, 2015,145:295-305. doi: 10.1016/j.apenergy.2015.01.098

    7. [7]

      LI Y, YANG H P, HU J H, WANG X H, CHEN H P. Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification[J]. Fuel, 2014,117:1174-1180. doi: 10.1016/j.fuel.2013.08.066

    8. [8]

      WANG Y, ZHU S, GAO M, YANG Z, YAN L, BAI Y, LI F. A study of char gasification in H2O and CO2 mixtures:Role of inherent minerals in the coal[J]. Fuel Process Technol, 2016,141(part 1):9-15.  

    9. [9]

      BENSON S A, HOLM P L. Comparison of inorganic constituents in three low-rank coals[J]. Ind Eng Chen Prod Res Dev, 1985,24(1):145-149. doi: 10.1021/i300017a027

    10. [10]

      SKODRAS G, SAKELLAROPOULOS G P. Mineral matter effects in lignite gasification[J]. Fuel Process Technol, 2002,77:151-158.  

    11. [11]

      BAI Jin, LI Wen, LI Chun-zhu, BAI Zong-qing, LI Bao-qing. Influence of mineral mater on high temeperture of coal char[J]. J Fuel Chem Technol, 2009,37(2):134-138.  

    12. [12]

      SAKAWA M, SAKURAI Y, HARA Y. Influence of coal characteristics on CO2 gasification[J]. Fuel, 1982,61(8):717-720. doi: 10.1016/0016-2361(82)90245-9

    13. [13]

      HATTINGH B B, EVERSON R C, NEOMAGUS H W J P, BUNT J R. Assessing the catalytic effect of coal ash constituents on the CO2 gasification rate of high ash, South African coal[J]. Fuel Process Technol, 2011,92(10):2048-2054. doi: 10.1016/j.fuproc.2011.06.003

    14. [14]

      LI X, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006,85(10/11):1518-1525.  

    15. [15]

      QUYN D M, WU H W, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003,82(5):587-593. doi: 10.1016/S0016-2361(02)00323-X

    16. [16]

      AND S M, SRIVASTAVA S K. Minerals transformations in northeastern region coals of india on heat treatment[J]. Energy Fuels, 2006,20(3):1089-1096. doi: 10.1021/ef050155y

    17. [17]

      BAI J, LI W, LI B. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008,87(4/5):583-591.  

    18. [18]

      LIN X, WANG C, IDETA K, MIYAWAKI J, NISHIYAMA Y, WANG Y, YOON S, MOCHIDA I. Insights into the functional group transformation of a Chinese brown coal during slow pyrolysis by combining various experiments[J]. Fuel, 2014,118:257-264. doi: 10.1016/j.fuel.2013.10.081

    19. [19]

      SUN Jia-liang, CHEN Xu-jun, WANG Fang, LIN Xiong-chao, WANG Yong-gang. Effect of oxygen on the structure and reactivity of char during steam gasificaiton of Shengli brown coal[J]. J Fuel Chem Technol, 2015,43(7):769-778.  

    20. [20]

      TANNER J, KABIR K B, MULLER M, BHATTACHARYA S. Low temperature entrained flow pyrolysis and gasification of a Victorian brown coal[J]. Fuel, 2015,154(6):107-113.  

    21. [21]

      MIURA K, HASHIMOTO K, SILVESTON P L. Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity[J]. Fuel, 1989,68(11):1461-1475. doi: 10.1016/0016-2361(89)90046-X

    22. [22]

      LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006,85(12):1700-1707.  

    23. [23]

      BENSON S A, HOLM P L. Comparison of inorganic constituents in three low-rank coals[J]. Ind Eng Chen Prod Res Dev, 1985,24(1):145-149. doi: 10.1021/i300017a027

    24. [24]

      ZHANG L, KAJITANI S, UMEMOTO S, WANG S, QUYN D, SONG Y, LI T T, ZHANG S, DONG L, LI C Z. Changes in nascent char structure during the gasification of low-rank coals in CO2[J]. Fuel, 2015,158:711-718. doi: 10.1016/j.fuel.2015.06.014

    25. [25]

      LI C, YANG S, CHEN X, LIN X, WANG Y. The characteristic of Shengli brown coal fractions from heavy medium separation and its influence on CO2 gasification[J]. Fuel Process Technol, 2017,155:232-237. doi: 10.1016/j.fuproc.2016.06.041

    26. [26]

      TAY H L, KAJITANI S, WANG S, LI C Z. A preliminary Raman spectroscopic perspective for the roles of catalysts during char gasification[J]. Fuel, 2014,121:165-172. doi: 10.1016/j.fuel.2013.12.030

    27. [27]

      LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007,86(12):1664-1683.  

    28. [28]

      TANG Jia, WANG Qin-hui, ZHANG Rui, SHI Zheng-lun, CEN Ke-fa. Effect of specific surface area and ash content on the mechanisms of bituminous coal char gasification[J]. Proc CSEE, 2015,35(20):5244-5250.  

    29. [29]

      OHTSUKA Y, ASAMI K. Highly active catalysts from inexpensive raw materials for coal gasification[J]. Catal Today, 1997,39(1/2):111-125.  

    30. [30]

      JIANG Ming-quan. The study on alkali catalyzed gasification of coal char:Behaviour of hydrogen produciton and performance of the catalysts[D]. Shanghai:East China University of Science and Technology, 2013.

    31. [31]

      RADOVIC L R. Catalytic coal gasification:Use of calcium versus potassium[J]. Fuel, 1984,63(7):1028-1030. doi: 10.1016/0016-2361(84)90329-6

    32. [32]

      GOMEZ A, MAHINPEY N. A new method to calculate kinetic parameters independent of the kinetic model:Insights on CO2 and steam gasification[J]. Chem Eng Res Des, 2015,95:346-357. doi: 10.1016/j.cherd.2014.11.012

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    3. [3]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    6. [6]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    7. [7]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    11. [11]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    12. [12]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    14. [14]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    19. [19]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    20. [20]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

Metrics
  • PDF Downloads(0)
  • Abstract views(1432)
  • HTML views(291)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return