Citation: Liu Panpan, Jia Zhenxin, Lv Junjun, Yang Fucheng, Luo Yuxin, Gao Hongyi. An Overview on Organic-Inorganic Composite Aerogels[J]. Chemistry, ;2019, 82(10): 867-877. shu

An Overview on Organic-Inorganic Composite Aerogels

  • Corresponding author: Gao Hongyi, hygao2009@163.com
  • Received Date: 16 May 2019
    Accepted Date: 22 June 2019

Figures(16)

  • Aerogels have excellent properties such as low density, low thermal conductivity, high specific surface area and high porosity, which have a good application prospect in the fields of heat insulation, sensing, catalysis, adsorption and energy storage. However, the porous network structure of aerogels also causes low strength and poor toughness, which seriously restricts their practical application. Organic-inorganic composite process is an effective method to enhance the mechanical properties of aerogels. It has been found in recent years that the preparation of aerogels by organic-inorganic composite method can also impart other novel properties to aerogels such as flame retardancy. In this paper the new research progress in organic-inorganic composite aerogels was summerized, and its principle, synthetic methods and related properties were analyzed. Finally, the advantages, problems and the future development direction of organic-inorganic composite aerogels were discussed.
  • 加载中
    1. [1]

      C Lei, Z Hu, Y Zhang et al. Micropor. Mesopor. Mater., 2018, 258:236~243. 

    2. [2]

      A C Pierre, G M Pajonk. Chem. Rev., 2002, 102(11):4243~4266. 

    3. [3]

      Q Liu, A W Frazier, X Zhao et al. Nano Energy, 2018, 48:266~274. 

    4. [4]

      J Kehrle, T K Purkait, S Kaiser et al. Langmuir, 2018, 34(16):4888~4896. 

    5. [5]

      S Ghasemi, S Karim. Mater. Chem. Phys., 2018, 205:347~358.

    6. [6]

      S Salimian, A Zadhoush, A Mohammadi. J. Reinf. Plast. Comp., 2018, 37(7):441~459. 

    7. [7]

      M Cai, S Shafi, Y Zhao. J. Non-Cryst Solids, 2018, 481:622~626. 

    8. [8]

      Y Huang, L Gong, Y Pan et al. RSC Adv., 2018, 8(5):2350~2356. 

    9. [9]

      L A Capadona, M A B Meador, A Alunni et al. Polymer, 2006, 47(16):5754~5761. 

    10. [10]

      Z Wu, L Zhang, J Li et al. RSC Adv., 2018, 8(11):5695~5701. 

    11. [11]

      H Maleki, L Durães, A Portugal. J. Non-Cryst Solids, 2014, 385:55~74. 

    12. [12]

      D A Loy, K J Shea. Chem. Rev., 1995, 95(5):1431~1442. 

    13. [13]

      J Morell, G Wolter, M Fröba. Chem. Mater., 2005, 17(4):804~808. 

    14. [14]

      S Yun, H Luo, Y Gao. J. Mater. Chem. A, 2014, 2(35):14542~14549. 

    15. [15]

      Z D Shao, X Cheng, Y M Zheng. J. Colloid Interf. Sci., 2018, 530:412~423. 

    16. [16]

      H Maleki, L Durães, A Portugal. Mater. Lett., 2016, 179:206~209. 

    17. [17]

      P R Aravind, P Niemeyer, L Ratke. Micropor. Mesopor. Mater., 2013, 181:111~115. 

    18. [18]

      V G Parale, K Y Lee, H Y Nah et al. Ceram. Int., 2018, 44(4):3966~3972. 

    19. [19]

      S Yun, H Luo, Y Gao. J. Mater. Chem. A, 2015, 3(7):3390~3398. 

    20. [20]

      Z Wang, Z Dai, J Wu et al. Adv. Mater., 2013, 25(32):4494~4497. 

    21. [21]

      F Zou, P Yue, X Zheng et al. J. Mater. Chem. A, 2016, 4(28):10801~10805. 

    22. [22]

      D Chen, H Gao, Z Jin et al. ACS Appl. Nano Mater., 2018, 1(2):933~939. 

    23. [23]

      D Chen, H Gao, P Liu et al. RSC Adv., 2019, 9(15):8664~8671. 

    24. [24]

      S Iswar, G M B F Snellings, S Zhao et al. Acta Mater., 2018, 147:322~328. 

    25. [25]

      D J Boday, R J Stover, B Muriithi et al. J. Mater. Sci., 2011, 46(19):6371~6377. 

    26. [26]

      M Aghabararpour, M Mohsenpour, S Motahari et al. J. Non-Cryst Solids, 2018, 481:548~555. 

    27. [27]

      M A B Meador, C M Scherzer, S L Vivod et al. ACS Appl. Mater. Intef., 2010, 2(7):2162~2168. 

    28. [28]

      H Guo, M A B Meador, L McCorkle et al. ACS Appl. Mater. Intef., 2011, 3(2):546~552. 

    29. [29]

      B N Nguyen, M A B Meador, M E Tousley et al. ACS Appl. Mater. Intef., 2009, 1(3):621~630. 

    30. [30]

      T Shimizu, K Kanamori, A Maeno et al. Chem. Mater., 2016, 28(19):6860~6868. 

    31. [31]

      H Maleki, L Durǎes, A Portugal. J. Phys. Chem. C, 2015, 119(14):7689~7703. 

    32. [32]

      B N Nguyen, M A B Meador, A Medoro et al. ACS Appl. Mater. Intef., 2010, 2(5):1430~1443. 

    33. [33]

      G Zu, T Shimizu, K Kanamori et al. ACS Nano, 2018, 12(1):521~532. 

    34. [34]

      G Zu, K Kanamori, T Shimizu et al. Chem. Mater., 2018, 30(8):2759~2770. 

    35. [35]

      G Zu, K Kanamori, A Maeno et al. Angew. Chem. Int. Ed., 2018, 57(31):9722~9727. 

    36. [36]

      J Zhang, Y Cheng, M Tebyetekerwa et al. Adv. Funct. Mater., 2019:1806407.

    37. [37]

      Z L Yu, N Yang, V Apostolopoulou-Kalkavoura et al. Angew. Chem. Int. Ed., 2018, 57(17):4538~4542. 

    38. [38]

      W Fan, L Zuo, Y Zhang et al. Compos. Sci. Technol., 2018, 156:186~191. 

    39. [39]

      W Guo, J Liu, P Zhang et al. Compos. Sci. Technol., 2018, 158:128~136. 

    40. [40]

      G Zhu, H Xu, A Dufresne et al. ACS Sustain. Chem. Eng., 2018, 6(5):7168~7180. 

    41. [41]

      Y Li, X Liu, X Nie et al. Adv. Funct. Mater., 2018:1807624.

  • 加载中
    1. [1]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    4. [4]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    5. [5]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    6. [6]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    7. [7]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    13. [13]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    14. [14]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    15. [15]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    16. [16]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    17. [17]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    19. [19]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(0)
  • Abstract views(2793)
  • HTML views(559)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return