Citation: LÜ Ying-rong, SUN Wei-yan, WANG Feng. Highly active PtCo-CNT@TiO2 composite nanoanode catalyst for direct methanol fuel cells[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(12): 1522-1528. shu

Highly active PtCo-CNT@TiO2 composite nanoanode catalyst for direct methanol fuel cells

  • Corresponding author: WANG Feng, 1037400468@qq.com
  • Received Date: 27 August 2019
    Revised Date: 27 October 2019

    Fund Project: the Shanxi Natural Science Foundation 201701D121040The project was supported by the Shanxi Natural Science Foundation(201701D121040)

Figures(9)

  • With CNT@TiO2 prepared by sol-gel method as the support, the PtCo-CNT@TiO2 composite was prepared by electro-deposition and used as the anode catalyst for direct methanol fuel cells. The PtCo-CNT@TiO2 composite was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and electrochemical workstation. The results show that the PtCo-CNT@TiO2 composite displays significant crystals and the metal particles surround the TiO2-coated carbon nanotubes; when used as the anode catalyst for direct methanol fuel cells, it exhibits high activity and stability. The PtCo-CNT@TiO2 catalyst has an electrochemical surface area of 164 m2/g and the oxidation peak current of methanol reaches 45 mA/cm2 at 65 ℃; after 300 s, the oxidation current tends to be 24 mA/cm2 and the oxidation peak current of methanol under alkaline conditions is 39.7 mA/cm2.
  • 加载中
    1. [1]

      HU L Q. Proton exchange membrane fuel cell[J]. Chin Battery Ind, 2002,7(Z1):225-231.  

    2. [2]

      LUO Y L, LIANG Z X, LIAO S J. Recent development of anode electrocatalysts for direct methanol fuel cells[J]. Chin J Catal, 2010,31(2):141-149.

    3. [3]

      GIORGI L, GIORGI R, GAG-LIARDI S, SALERNITANO E, DIKON-IMOS T, LISI N, DE FEDERICA M, RICCAR-DIS , ALVISI M. Pt alloys on carbon nanostructures as electrocatalysts for direct methanol fuel cell[J]. Adv Sci Technol, 2010,72:277-282. doi: 10.4028/www.scientific.net/AST.72.277

    4. [4]

      LIU Z L, LEE J Y, HAN M. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions[J]. J Mater Chem, 2002,12(8):2453-2458. doi: 10.1039/b200875k

    5. [5]

      GUO J W, ZHAO T S, PRABHURAM J, CHEN R, WONG C W. Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells[J]. Electrochim Acta, 2006,51(4):754-763.  

    6. [6]

      HASSAN A, PAGANI N, VALDECIR A, TICIANELL I, EDSON A. Effect of addition of Ru and/or Fe in the stability of PtMo/C electrocatalysts in proton exchange membrane fuel cells[J]. Electrocatalysis, 2015,6(6):512-520. doi: 10.1007/s12678-015-0269-7

    7. [7]

      YU P, PEMBERTON M, PLASSE P. PtCo/C cathode catalyst for improved durability in PEMFCs[J]. J Power Sources, 2005,144(1):11-20. doi: 10.1016/j.jpowsour.2004.11.067

    8. [8]

      AMUSSEN R M, HOLTHINDLE P, NIGRO S. Comparative study of nanoporous Pt, PtRu and PtRuIr catalysts using electrochemical FT-IR spectroscopy[J]. Electrochem, 2010,16(3):263-272.

    9. [9]

      WU Y N, LIAO S J. Shortened carbon nanotubes as supports to prepare high-performance Pt/SCNT and PtRu/SCNT catalysts for fuel cells[J]. Acta Phys-Chim Sin, 2010,26(3):669-674(6).  

    10. [10]

      NETO A O, DIAS R R, TUSI M M, LINARDI M, SPINACE E V. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process[J]. J Power Sources, 2007,166(1):87-91. doi: 10.1016/j.jpowsour.2006.12.088

    11. [11]

      PARK K W, AHN K S, CHOI J H, NAH Y C, SUNG Y E. PtRu-WO3 nanostructured alloy electrode for use in thin-film fuel cells[J]. Appl Phys Lett, 2003,82(7):1090-1092. doi: 10.1063/1.1545153

    12. [12]

      RODRIGUES R M S, TUSI M M, CHIKASAWA M H, FORBICINI C A L G O, LINARDI M, SPINACÉE V, OLIVEIRA NETO A. Preparation and characterization of PtRu/C-rare earth using an alcohol-reduction process for ethanol electro-oxidation[J]. Ionics, 2011,17(2):189-193. doi: 10.1007/s11581-011-0519-5

    13. [13]

      ZHONG Sheng-wen, HU Xian-chao, YU Yuan, YU Chang-lin, ZHOU Yang. Electrocatalytic performance of core-shell tungsten carbide composite microsphere catalyst for methanol[J]. J Fuel Chem Technol, 2018,46(5):585-591. doi: 10.3969/j.issn.0253-2409.2018.05.011 

    14. [14]

      SUN S H, Zhang G X, GENG D S, CHEN Y G, BANIS M N, LI R Y, CAI M, SUN X L. Direct growth of single-crystal Pt nanowires on Sn@CNT nanocable:3D electrodes for highly active electrocatalysts[J]. Chemistry, 2010,16(3):829-835.

    15. [15]

      BEDOLLA Z I, VERDE Y, VALENZUELA A M, GOCHI Y, OROPEZA M T, BERHAULTE G, ALONSO G. Sonochemical synthesis and characterization of Pt/CNT, Pt/TiO2, and Pt/CNT/TiO2, electrocatalysts for methanol electro-oxidation[J]. Electrochim Acta, 2015,186:76-84. doi: 10.1016/j.electacta.2015.10.084

    16. [16]

      WANG Xu-hong, ZHU Hui, HUANG Jin-shan, JI Wang-jin, LUO Xiu-qi. Performance of Pt-SnO2 anode catalyst for carbon fiber supported direct ethanol Fuel Cell[J]. J Fuel Chem Technol, 2014,42(6):763-768.  

    17. [17]

      CHEN M L, ZHANG F J, OH W H. Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources[J]. New Carbon Mater, 2009,24(2):0-166.  

    18. [18]

      WANG C, WAJESN M, WANG X, TANG J M. Proton exchange membrane fuel cells with carbon nanotube based electrodes[J]. Nano Lett, 2004,4(2):345-348. doi: 10.1021/nl034952p

    19. [19]

      CLÁUDIA G, SILVA , WANG W D, FARIA J L. Nanocrystalline CNT-TiO2 composites produced by an acid catalyzed sol-gel method[J]. Mater Sci Forum, 2008,587/588:849-853. doi: 10.4028/www.scientific.net/MSF.587-588.849

    20. [20]

      ZHAO H X, LI H F, YU H T, CHANG H M, QUAN X, CHEN S. CNTs-TiO2/Al2O3 composite membrane with a photocatalytic function:Fabrication and energetic performance in water treatment[J]. Sep Purif Technol, 2013,116(37):360-365.

    21. [21]

      SUDACHOM M, WARAKULWIT C, PRAPAINAINAR C, WITOON T, PRAPAINAINARA P. One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells:Synthesis and characterization[J]. J Fuel Chem Technol, 2017,45(5):596-607. doi: 10.1016/S1872-5813(17)30031-2

    22. [22]

      KURI GANOVA A B, LEONTYEV I N, ALEXANDRIN A S, MASLOVA O A, RAKHMATULLIN A I, SMIRONVA N V. Electrochemically synthesized Pt/TiO2-C catalysts for direct methanol fuel cell applications[J]. Mendeleev Commun, 2017,27(1):67-69. doi: 10.1016/j.mencom.2017.01.021

    23. [23]

      CHEN Wei, LIAO Wei-ping, JING Ming-shan, SUO Zhang-huai. Electrocatalytic performance of Pt-Au catalyst supported on carbon black modified by chitosan for methanol oxidation[J]. J Fuel Chem Technol, 2012,40(12):1459-1465. doi: 10.3969/j.issn.0253-2409.2012.12.008

    24. [24]

      ZHOU Yang, HU Xian-chao, LIU Xi-hui, QU Hui-nan, WEN He-rui, YU Chang-lin. Study on the electrocatalytic oxidation of methanol over hollow dendritic tungsten trioxide supported platinum catalyst[J]. J Fuel Chem Technol, 2015,43(2):251-256. doi: 10.3969/j.issn.0253-2409.2015.02.017 

    25. [25]

      JALAN R, TURJANSKI N, TAYLOR-ROBINSON S D, KOEPP M J, RICHARDSON M P, WILSON J A, BELL J D, BROOKS D J. Increased availability of central benzodiazepine receptors in patients with chronic hepatic encephalopathy and alcohol related cirrhosis[J]. Gut, 2000,46(4)546. doi: 10.1136/gut.46.4.546

    26. [26]

      WEI L, LANE A M. Resolving the HUPD and HOPD by DEMS to determine the ECSA of Pt electrodes in PEM fuel cells[J]. Electrochem Commun, 2011,13(9):913-916. doi: 10.1016/j.elecom.2011.05.028

    27. [27]

      ZHAO Y L, WANG Y H, ZANG J B, LU J, XU X P. A novel support of nano titania modified graphitized nanodiamond for Pt electrocatalyst in direct methanol fuel cell[J]. Int J Hydrogen Energy, 2015,40(13):4540-4547. doi: 10.1016/j.ijhydene.2015.02.041

    28. [28]

      VILIAN A T E, HWANG S K, KWAK C H, OH S Y, KIM C Y, LEE G-W, LEE J B, HUH Y K, HANL Y-K. Pt-Au bimetallic nanoparticles decorated on reduced graphene oxide as an excellent electrocatalysts for methanol oxidation[J]. Synth Met, 2016,219:52-59. doi: 10.1016/j.synthmet.2016.04.013

    29. [29]

      CAO J Y, CHEN M, CHENG L, WANG S J, ZOU Z Q, LI Z L, DANIEL L, AKINS D K, YANG H. Double microporous layer cathode for membrane electrode assembly of passive direct methanol fuel cells[J]. Int J Hydrogen Energy, 2010,35(10):4622-4629. doi: 10.1016/j.ijhydene.2010.02.012

    30. [30]

      CAO X, WANG N, HAN Y, XU Y, LI M X, SHAO Y H. PtAg bimetallic nanowires:Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells[J]. Nano Energy, 2015,12(12):105-114.

    31. [31]

      WU L, XU T W, WU D, ZHENG X. Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell[J]. J Membr Sci, 2008,310(1/2):577-585.  

    32. [32]

      SANTOS M C L, NANDENHA J, AYOUB J M S, ASSUMP O M H M T, NETO A O. Methanol oxidation in acidic and alkaline electrolytes using PtRuIn/C electrocatalysts prepared by borohydride reduction process[J]. J Fuel Chem Technol, 2018,46(12):65-74.  

  • 加载中
    1. [1]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    9. [9]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(16)
  • Abstract views(1030)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return