Citation: LIU Shao-lin, KONG Jiao, SHEN Yan-feng, LI Ting, YANG Nuan-nuan, WANG Mei-jun, CHANG Li-pin. Sulfur occurrence and transformation during pyrolysis of the flotation fraction from coking coals with high organic sulfur[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 915-924. shu

Sulfur occurrence and transformation during pyrolysis of the flotation fraction from coking coals with high organic sulfur

  • Corresponding author: WANG Mei-jun, wangmeijun@tyut.edu.cn
  • Received Date: 20 March 2019
    Revised Date: 27 May 2019

    Fund Project: the Youth Fund of Taiyuan University of Technology 2017QN60National Nature Science Foundation of China 21878208The project was supported by National Nature Science Foundation of China (21878208, 21808152), the Shanxi Province Science Foundation for Youth (201801D221361) and the Youth Fund of Taiyuan University of Technology (2017QN60)National Nature Science Foundation of China 21808152the Shanxi Province Science Foundation for Youth 201801D221361

Figures(8)

  • Two coking coals with high organic sulfur were separated into five fractions with different density ranges by heavy medium separation. The occurrences and transformation of sulfur during pyrolysis of different fractions were investigated by X-ray photoelectron spectroscopy (XPS), solid state 13C nuclear magnetic resonance (13C NMR) and pyrolysis mass spectrometry (Py-MS). The results show that different fractions have significant differences in distribution, occurrence, and chemical environment of sulfur. Organic sulfur is mainly distributed in the low density fraction (D1) and exists in the form of thiophene. Inorganic sulfur such as mineral component is mainly distributed in the high density fraction (D5). As the increase of density of coal fraction, the proportion of aliphatic carbon decreases, and aromatic carbon increases, as well as content of mercaptan and thioether in D1 increases greatly. The volatiles are greatly released since decomposition of aliphatic carbon structure during pyrolysis, which promotes the release of sulfur containing gases, and then improves desulfurization efficiency of D1. However, transformation of sulfur is mainly affected by minerals during D5 pyrolysis.
  • 加载中
    1. [1]

      WU Chen-xiao. Preparation of blended raw high-sulphur coal in Dongpang coal mine[J]. Clean Coal Technol, 2013,19(1):61-64.  

    2. [2]

      WANG Jian, YU Cheng-heng, JI Wu-pin. Preparation of blending coking high sulfur coal[J]. Fuel Chem Process, 2011,42(5):26-27. doi: 10.3969/j.issn.1001-3709.2011.05.010

    3. [3]

      IBARRA J V, PALACIOS J M, MOLINER R, BONET A J. Evidence of reciprocal organic matter-pyrite interactions affecting sulfur removal during coal pyrolysis[J]. Fuel, 1994,73(7):1046-1050. doi: 10.1016/0016-2361(94)90235-6

    4. [4]

      CALKINS W H. The chemical forms of sulfur in coal:A review[J]. Fuel, 1994,73(4):475-484. doi: 10.1016/0016-2361(94)90028-0

    5. [5]

      GRYGLEWICA G, WILK P, YPERMAN J, FRANCO D V, MAES I I, MUILENS J, POUCKE L C V. Interaction of the organic matrix with pyrite during pyrolysis of a high-sulfur bituminous coal[J]. Fuel, 1996,75(13):1499-1504. doi: 10.1016/0016-2361(96)00141-X

    6. [6]

      ZHANG D K, YANI S. Sulphur transformation during pyrolysis of an Australian lignite[J]. Proc Combust Inst, 2011,33(2):1747-1753. doi: 10.1016/j.proci.2010.07.074

    7. [7]

      CHEN H K, LI B Q, YANG J L, ZHANG B J. Transformation of sulfur during pyrolysis and hydroprolysis of coal[J]. Fuel, 1998,77:487-493. doi: 10.1016/S0016-2361(97)00275-5

    8. [8]

      WANG M J, LIU L J, WANG J C, CHANG L P, WANG H, HU Y F. Sulfur K-edge XANES study of sulfur transformation during pyrolysis of four coals with different ranks[J]. Fuel Process Technol, 2015,131:262-269. doi: 10.1016/j.fuproc.2014.10.038

    9. [9]

      WANG M J, JIA T H, WANG J C, HU Y F, LIU F R, WANG H, CHANG L P. Changes of sulfur forms in coal after tetrachloroethylene extraction and theirs transformations during pyrolysis[J]. Fuel, 2016,186:726-733. doi: 10.1016/j.fuel.2016.09.007

    10. [10]

      CHEN Hao-kan, LI Bao-qing, ZHANG Bi-jiang. effects of mineral matter on evolution of sulfur - containing gases in pyrolysis and hydropyrolysis[J]. J Fuel Chem Technol, 1999,27(S1):5-10.  

    11. [11]

      ZHOU Shi-xue, NIE Xi-wen, WANG Ron-chun, LIU Ze-chang. Study on co-pyrolysis of high sulfur and strongly caking coal with biomass[J]. J Fuel Chem Technol, 2000,28(4):294-297. doi: 10.3969/j.issn.0253-2409.2000.04.002

    12. [12]

      KANG Xi-dong, HU Shan-ting, PANG Zhi-gui, PAN Yin-miao, WANG Ling-zhi. Study on relationship between microscopic coal petrology and coke intensity[J]. Geosci, 1997,11(2):164-169.  

    13. [13]

      ZHOU Shi-yon, ZHAO Jun-guo. Properties of Coking Coal and Quality of Coke for the Blast Furnace[M]. Beijing:Metallurgical Industry Press, 2005.

    14. [14]

      ZHANG L, LIU W L, MEN D P. Preparation and coking properties of coal maceral concentrates[J]. Int J Min Sci Technol, 2014,24(1):93-98. doi: 10.1016/j.ijmst.2013.12.016

    15. [15]

      TSENG B H, BUCKENTIN M, HSIEH K C. Organic sulphur in coal macerals[J]. Fuel, 1986,5(3):385-389.  

    16. [16]

      DEMIR I, HARVEY R D. Variation of organic sulfur in macerals of selected Illinois Basin coals[J]. Org Geochem, 1991,7(4):525-533.  

    17. [17]

      LEI Jia-jin, REN De-yi, HAN De-xin, TANG Xiu-yi. The distribution of organic sulfur in macerals of coals accumulated in different environments[J]. Coal Geol Explor, 1995,3(5):14-18.  

    18. [18]

      SUN Qing-lei, LI Wen, CHEN Hao-kan, LI Bao-qing. Characteristic of sulfur-containing gases released from the pyrolysis of coal macerals[J]. J China Univ Min Technol, 2005,4(4):518-522. doi: 10.3321/j.issn:1000-1964.2005.04.024

    19. [19]

      CHEN Peng. Application of XPS in study forms of organic sulfur in macerals of Yanzhou coal[J]. J Fuel Chem Technol, 1997,5(3):238-241.  

    20. [20]

      LI C L, YANG S S, CHEN X J, LIN X C, WANG Y G. The characteristic of Shengli brown coal fractions from heavy medium separation and its influence on CO2 gasification[J]. Fuel Process Technol, 2017,155:232-237. doi: 10.1016/j.fuproc.2016.06.041

    21. [21]

      LIN X C, LUO M, LI S Y, YANG Y P, CHEN X J, B , WANG Y G. The evolutionary route of coal matrix during integrated cascade pyrolysis of a typical low-rank coal[J]. Appl Energy, 2017,199:335-346. doi: 10.1016/j.apenergy.2017.05.040

    22. [22]

      QUEROL X, CABRERA L, PICKEL W, LÓPEZ-SOLER A, HAGEMANN H W, FERNÁNDEZ-TURIEL J L. Geological controls on the coal quality of the Mequinenza subbituminous coal deposit, northeast Spain[J]. Int J Coal Geol, 1996,29(1):67-91.  

    23. [23]

      GE Tao, CAI Chuan-chuan. The XPS analysis of different density level organic sulfur in coking coal[J]. J Anhui Univ Sci Technol, 2015,35(3):14-16. doi: 10.3969/j.issn.1672-1098.2015.03.005

    24. [24]

      YAO Qiu-xiang, DU Mei-li, WANG Shui-li, LIU Jing, YANG Jian-li. Modes of occurrence and washability evaluation of sulfur in high sulfur coal[J]. Coal Convers, 2013,36(1):24-27. doi: 10.3969/j.issn.1004-4248.2013.01.006

    25. [25]

      LIU F R, LI W, CHEN H K, LI B Q. Uneven distribution of sulfurs and their transformation during coal pyrolysis[J]. Fuel, 2007,86(3):360-366. doi: 10.1016/j.fuel.2006.07.021

    26. [26]

      KOZLOWSKI M. XPS Study of reductively and non-reductively modified coals[J]. Fuel, 2004,83(3):259-265. doi: 10.1016/j.fuel.2003.08.004

    27. [27]

      MA Ling-ling, QIN Zhi-hong, ZHANG Lu, LIU Xu, CHEN Hang. Peak fitting methods and parameter settings in XPS analysis for organic sulfur in coal[J]. J Fuel Chem Technol, 2014,42(3):277-283.  

    28. [28]

      HOU J L, MA Y, LI S Y, SHI J, HE L, LI J. Transformation of sulfur and nitrogen during Shenmu coal pyrolysis[J]. Fuel, 2018,231:134-144. doi: 10.1016/j.fuel.2018.05.046

    29. [29]

      LIU P, LE J W, WANG L L, PAN T Y, LU X L, ZHANG D X. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis[J]. Appl Energy, 2016,183:470-477. doi: 10.1016/j.apenergy.2016.08.166

    30. [30]

      WANG M J, HU Y F, WANG J C, CHANG L P, WANG H. Transformation of sulfur during pyrolysis of inertinite-rich coals and correlation with their characteristics[J]. J Anal Appl Pyrolysis, 2013,104:585-592. doi: 10.1016/j.jaap.2013.05.010

  • 加载中
    1. [1]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    2. [2]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    4. [4]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    7. [7]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    14. [14]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    15. [15]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    18. [18]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    19. [19]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    20. [20]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(11)
  • Abstract views(484)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return