Citation: ZHANG Hai-rong, LIU Hong-yan, PAN Qi-liang, LIU Hui-jun, SHEN La-zhen, CUI Yue, LIU Yi-ding, ZHANG Tao, JIANG Yu, GUO Yong. Modification of the acidic and textural properties of ZSM-5 zeolite by using double mineralizers in synthesis and its catalytic performance in the conversion of methanol to propene[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 967-976. shu

Modification of the acidic and textural properties of ZSM-5 zeolite by using double mineralizers in synthesis and its catalytic performance in the conversion of methanol to propene

  • Corresponding author: ZHANG Hai-rong, 673839261@qq.com LIU Hong-yan, 409760354@qq.com
  • Received Date: 30 March 2018
    Revised Date: 30 June 2018

    Fund Project: the National Nature Science Foundation of China 21477069the Datong Science and Technology Public Relations Project 2015021the National Nature Science Foundation of China 21506120the Datong Science and Technology Public Relations Project 2018023University Students' Innovation and Entrepreneurship of Shanxi Datong University XDC2017257the National Nature Science Foundation of China 51303098the Doctoral Science Foundation of Shanxi Datong University QD201049Research Project Supported by Shanxi Scholarship Council of China 2016-104The project was supported by the National Nature Science Foundation of China (51303098, 21477069, 21506120), Research Project Supported by Shanxi Scholarship Council of China (2016-104), the Datong Science and Technology Public Relations Project (2015021, 2018023), the Doctoral Science Foundation of Shanxi Datong University (QD201049) and University Students' Innovation and Entrepreneurship of Shanxi Datong University (XDC2017257)

Figures(6)

  • A static hydrothermal approach was adopted to synthesize nanosized SiO2-ZSM-5 zeolite in the media of F--OH- with double mineralizers, using tetraethoxysilane, sodium aluminate, and tetrapropylammonium hydroxide as the silicon source, aluminum source, and template agent, respectively. The physical and chemical properties of the synthesized ZSM-5 zeolites were characterized and their catalytic performance was evaluated in the conversion methanol to propene (MTP); the effect of F-/Al2O3 molar ratio on the catalytic performance of synthesized H-ZSM-5 was investigated. The results indicate that an increase in the F-/Al2O3 molar ratio of the synthesis mixture leads to an increase in the surface content of microcrystalline SiO2, accompanying with a decrease in the relative crystallinity, surface area, pore volume, and acid strength and density. With a F-/Al2O3 molar ratio of 12, the SiO2-ZSM-5 zeolite exhibits the best catalytic performance in MTP, with a selectivity of 45% to propene and a propene/ethene (P/E) ratio of greater than 10. It is further hypothesized that the transition state shape selectivity plays an important role in determining the product selectivity in MTP.
  • 加载中
    1. [1]

      AGUDAMU , SUN Y, ZHANG F. Product distribution of methanol to propene reaction found in Shenhua Ningxia coal group[J]. Coal Chem Ind (in Chinese), 2013,164(1):58-60.

    2. [2]

      Successful testing of manufacturing olefins from methanol in fluidized bed at Huaihua group[J]. China Pet Process Petrochem Technol, 2009, 11(4): 61-61.

    3. [3]

      ZHONG L, YU F, AN Y, ZHAO Y, SUN Y, LI Z, LIN T, LIN Y, QI X, DAI Y, GU L, HU J, JIN S, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016,538(5623):84-87.  

    4. [4]

      JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M, MIAO S, LI J, ZHU Y, XIAO D, HE T, YANG J, QI F, FU Q, BAO X. Selective conversion of syngas to light olefins[J]. Science, 2016,351(6277):1065-1068. doi: 10.1126/science.aaf1835

    5. [5]

      YANG Y, SUN C, DU J, YUE Y, HUA W, ZHANG C, SHEN W, XU H. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propene reaction[J]. Catal Commun, 2012,24(26):44-47.  

    6. [6]

      LIANG T, CHEN J, QIN Z, LI J, WANG P, WANG S, WANG G, DONG M, FAN W, WANG J. Conversion of methanol to olefins over H-ZSM-5 Zeolite:Reaction pathway is related to the framework aluminum siting[J]. ACS Catal, 2016,6(11):7311-7325. doi: 10.1021/acscatal.6b01771

    7. [7]

      SKLENAK S, DEDECEK J, LI C, WICHTERLOVA B, GABOVA V, SIERKA M, SAUER J. Aluminum siting in silicon-rich zeolite frameworks:A combined high-resolution 27Al NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5[J]. Angew Chem Int Ed, 2007,46(38):7286-7289. doi: 10.1002/(ISSN)1521-3773

    8. [8]

      KHARE R, LIU Z, HAN Y, BHAN A. A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on H-ZSM-5[J]. J Catal, 2017,348(4):300-305.  

    9. [9]

      ZHANG H, NING Z, LIU H, HAN S, TAO X, SEHN L, JIANG Y, GUO Y. Effect of silica sources on the properties of ZSM-5 and their catalytic performance for methanol conversion to propene[J]. Acta Pet Sin(Pet Process Sect), 2017,33(4):724-729.  

    10. [10]

      ZHANG H, NING Z, LIU H, HAN S, TAO X, SEHN L, JIANG Y, GUO Y, DOU T. Effect of SiO2/Al2O3 ratio on the properties of ZSM-5 and its catalytic performance for methanol to propene[J]. Mod Chem Ind, 2017,2017(6):79-83.  

    11. [11]

      LIU J, ZHANG C, SHEN Z, HUA W, TANG Y, SHEN W, YUE Y, XU H. Methanol to propene:Effect of phosphorus on a high silica H-ZSM-5 catalyst[J]. Catal Commun, 2009,10(11):1506-1509. doi: 10.1016/j.catcom.2009.04.004

    12. [12]

      WEN P, MEI C, LIU H, YANG W, CHEN Q. Influence of methanol partial pressure and ZSM-5 particl size on distribution of products for methanol conversion to propene[J]. Chem React Eng Technol, 2007,23(6):481-486.  

    13. [13]

      ZHAO T S, TAKEMOTO T, TSUBAKI N. Direct synthesis of propene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J]. Catal Commun, 2006,7(9):647-650. doi: 10.1016/j.catcom.2005.11.009

    14. [14]

      ZHAO T S, TAKEMOTO T, YONEYAMA Y, TSUBAKI N. Selective conversion of dimethyl ether to propene and light olefins over modified H-ZSM-5[J]. Chem Lett, 2005,34(7):970-971. doi: 10.1246/cl.2005.970

    15. [15]

      FIROOZI M, BAGHALHA M, ASADI M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catal Commun, 2009,10(12):1582-1585. doi: 10.1016/j.catcom.2009.04.021

    16. [16]

      MEI C, WEN P, LIU Z, LIU H, WANG Y, YANG W, XIE Z, HUA W, GAO Z. Selective production of propene from methanol:Mesoporosity development in high silica H-ZSM-5[J]. J Catal, 2008,258(1):243-249. doi: 10.1016/j.jcat.2008.06.019

    17. [17]

      ZHANG H R, NING Z X, LIU H Y, SHANG J P, HAN S H, JIANG D D, JIANG Y, GUO Y. Bi2O3 modification of H-ZSM-5 for methanol-to-propene conversion:Evidence of olefin-based cycle[J]. RSC Adv, 2017,7(27):16602-16607. doi: 10.1039/C6RA27849C

    18. [18]

      ZHANG H R, NING Z X, SHANG J P, LIU H Y, HAN S H, QU W S, JIANG Y, GUO Y. A durable and highly selective PbO/H-ZSM-5 catalyst for methanol to propene (MTP) conversion[J]. Microporous Mesoporous Mater, 2017,248(11):173-178.

    19. [19]

      EGEBLAD K, KUSTOVA M, ZHU K, CHRISTENSEN C H. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media[J]. Microporous Mesoporous Mater, 2007,101(1):214-223.  

    20. [20]

      LOUIS B, KIWI-MINSKER L. Synthesis of ZSM-5 zeolite in fluoride media:An innovative approach to tailor both crystal size and acidity[J]. Microporous Mesoporous Mater, 2004,74(1):171-178.  

    21. [21]

      CAULLET P, PAILLAUD J L, SIMON-MASSERON A, SOULARD M, PATARIN J. The fluoride route:A strategy to crystalline porous materials[J]. Comptes Rendus Chim, 2005,8(3):245-266.  

    22. [22]

      PINAR A B, MÁRQUEZ-ÁLVAREZ C, GRANDE-CASAS M, PÉREZ-PARIENTE J. Template-controlled acidity and catalytic activity of ferrierite crystals[J]. J Catal, 2009,263(2):258-265. doi: 10.1016/j.jcat.2009.02.017

    23. [23]

      KESSLER H, PATARIN J, SCHOTT-DARIE C. The opportunities of the fluoride route in the synthesis of microporous materials[J]. Stud Surf Sci Catal, 1995,26(14):75-113.

    24. [24]

      AIELLO R, CREA F, NIGRO E, TESTA F, MOSTOWICZ R, FONSECA A, NAGY J B. The influence of alkali cations on the synthesis of ZSM-5 in fluoride medium[J]. Microporous Mesoporous Mater, 1999,28(2):241-259. doi: 10.1016/S1387-1811(98)00241-8

    25. [25]

      KONINGSVELD H V, JANSEN J C, BEKKUM H V. The orthorhombic/monoclinic transition in single crystals of zeolite ZSM-5[J]. Zeolites, 1987,7(6):564-568. doi: 10.1016/0144-2449(87)90099-6

    26. [26]

      SUN Y J, FU Y B, CHEN Q, ZHANG C M, SANG L J, ZHANG Y F. Silicon dioxide coating deposited by PDPs on PET films and influence on oxygen transmission rate[J]. Chin Phys Lett, 2008,25(5):1753-1756. doi: 10.1088/0256-307X/25/5/063

    27. [27]

      IVANOVA S, LEBRUN C, VANHAECKE E, PHAM-HUU C, LOUIS B. Influence of the zeolite synthesis route on its catalytic properties in the methanol to olefin reaction[J]. J Catal, 2009,265(1):1-7. doi: 10.1016/j.jcat.2009.03.016

    28. [28]

      IVANOVA S, LOUIS B, LEDOUX M J, PHAM-HUU C. Autoassembly of nanofibrous zeolite crystals via silicon carbide substrate self-transformation[J]. J Am Chem Soc, 2007,129(11):3383-3391. doi: 10.1021/ja0686209

    29. [29]

      BARRETT P A, CAMBLOR M A, CORMA A, JONES R H, VILLAESCUSA L A. Synthesis and structure of as-prepared ITQ-4, A large pore pure silica zeolite:The role and location of fluoride snions and organic cations[J]. J Phys Chem B, 1998,102(21):4147-4155. doi: 10.1021/jp980735e

    30. [30]

      AXON S A, KLINOWSKI J. Nuclear magnetic resonance studies of the synthesis of silicalite by the "fluoride method"[J]. J Chem Soc Fara Trans, 1993,89(23):4245-4248. doi: 10.1039/FT9938904245

    31. [31]

      GUTH J L, KESSLER H, WEY R. New route to pentasil-type zeolites using a non alkaline medium in the presence of fluoride Ions[J]. Stud Surf Sci Catal, 1986,28:121-128. doi: 10.1016/S0167-2991(09)60864-8

    32. [32]

      JI W P, LEE J Y, KIM K S, HONG S B, SEO G. Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions[J]. Appl Catal A:Gen, 2008,339(1):36-44. doi: 10.1016/j.apcata.2008.01.005

    33. [33]

      NISHI K, YOKOMORI Y, KAMIYA N. Single-crystal structure of a pyridine sorption complex of zeolite H-ZSM-5(H-MFI)[J]. Microporous Mesoporous Mater, 2007,101(1/2):83-89.  

    34. [34]

      ZHANG L, GAO J, HU J, LI W, WANG J. Lanthanum oxides-improved catalytic performance of ZSM-5 in toluene alkylation with methanol[J]. Catal Lett, 2009,130(3/4):355-361.  

    35. [35]

      CAMPO A E S, GAYUBO A G, AGUAYO A T, TARRÍO A, BILBAO J. Acidity, surface species, and mechanism of methanol transformation into olefins on a SAPO-34[J]. Ind Eng Chem Res, 1998,37(6):2336-2340. doi: 10.1021/ie970748z

    36. [36]

      WU W, GUO W, XIAO W, LUO M. Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5[J]. Chem Eng Sci, 2011,66(20):4722-4732. doi: 10.1016/j.ces.2011.06.036

    37. [37]

      BORGES P, PINTO R R, LEMOS M A N D A, LEMOS F, VÉDRINE J C, DEROUANE E G, RIBEIRO F R. Light olefin transformation over ZSM-5 zeolites:A kinetic model for olefin consumption[J]. Appl Catal A:Gen, 2007,324(1):20-29.  

    38. [38]

      WANG C M, WANG Y D, XIE Z K, LIU Z P. Methanol to olefin conversion on HSAPO-34 zeolite from periodic density functional theory calculations:A complete cycle of side chain hydrocarbon pool mechanism[J]. J Phys Chem C, 2009,113(11):4584-4591. doi: 10.1021/jp810350x

    39. [39]

      SVELLE S, JOENSEN F, NERLOV J, OLSBYE U, LILLERUD K-P, KOLBOE S, BJØRGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc, 2006,128(46):14770-14771. doi: 10.1021/ja065810a

    40. [40]

      BJØRGEN M, BONINO F, KOLBOE S, LILLERUD K, ZECCHINA A, BORDIGA S. Spectroscopic evidence for a persistent benzenium cation in zeolite H-Beta[J]. J Am Chem Soc, 2003,125(51):15863-15868. doi: 10.1021/ja037073d

    41. [41]

      BJØRGEN M, OLSBYE U, SVELLE S, KOLBOE S. Conversion of methanol to hydrocarbons:The reactions of the heptamethylbenzenium cation over zeolite H-Beta[J]. Catal Lett, 2004,93(1/2):37-40. doi: 10.1023/B:CATL.0000016945.28495.f0

    42. [42]

      BJØRGEN M, OLSBYE U, PETERSEN D, KOLBOE S. The methanol-to-hydrocarbons reaction:Insight into the reaction mechanism from[12C]benzene and[13C]methanol coreactions over zeolite H-beta[J]. J Catal, 2004,221(1):1-10. doi: 10.1016/S0021-9517(03)00284-7

    43. [43]

      BJORGEN M, OLSBYE U, KOLBOE S. Coke precursor formation and zeolite deactivation:Mechanistic insights from hexamethylbenzene conversion[J]. J Catal, 2003,215(1):30-44. doi: 10.1016/S0021-9517(02)00050-7

    44. [44]

      SASSI A, WILDMAN M A, AHN H J, PRASAD P, HAW J F. Methylbenzene chemistry on zeolite HBeta:Multiple insights into methanol-to-olefin catalysis[J]. J Phys Chem B, 2002,106(9):2294-2303. doi: 10.1021/jp013392k

    45. [45]

      ARSTAD B, STEIN K. The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction[J]. J Am Chem Soc, 2001,123(33):8137-8138. doi: 10.1021/ja010668t

    46. [46]

      ARSTAD B, KOLBOE S. Methanol-to-hydrocarbons reaction over SAPO-34 molecules confined in the catalyst cavities at short time on stream[J]. Catal Lett, 2001,71(3/4):209-212. doi: 10.1023/A:1009034600533

    47. [47]

      SONG W, HAW J F, HENEGHAN C S. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J]. J Am Chem Soc, 2000,122(43):10726-10727. doi: 10.1021/ja002195g

    48. [48]

      SONG W, NICHOLAS J B, HAW J F. Acid-base chemistry of a carbenium ion in a zeolite under equilibrium conditions:Verification of a theoretical explanation of carbenium ion stability[J]. J Am Chem Soc, 2001,123(1):121-129. doi: 10.1021/ja002775d

    49. [49]

      BJORGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species[J]. J Catal, 2007,249(2):195-207. doi: 10.1016/j.jcat.2007.04.006

    50. [50]

      GOGUEN P W, TENG X, BARICH D H, SKLOSS T W, SONG W, WANG Z, NICHOLAS J B, HAW J F. Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite H-ZSM-5[J]. J Am Chem Soc, 1998,120(11):2650-2651. doi: 10.1021/ja973920z

    51. [51]

      SVELLE S, JOENSEN F, NERLOV J, OLSBYE U, LILLERUDK K P, KOLBOE S, BJØRGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc, 2006,128(46):14770-14771. doi: 10.1021/ja065810a

    52. [52]

      HUANG X, AIHEMAITIJIANG D, XIAO W D. Co-reaction of methanol and olefins on the high silicon H-ZSM-5 catalyst:A kinetic study[J]. Chem Eng J, 2016,286(2):150-164.  

    53. [53]

      WANG C, CHU Y, ZHENG A, XU J, WANG Q, GAO P, QI G, GONG Y, DENG F. New insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations[J]. Chem, 2014,20(39):12432-12443. doi: 10.1002/chem.v20.39

    54. [54]

      CHUAY T, CSTAIR P, NICHOLASJ B, SONGW , HAWJ F. UV Raman spectrum of 1, 3-dimethylcyclopentenyl cation adsorbed in zeolite H-MFI[J]. J Am Chem Soc, 2003,125(4):866-867. doi: 10.1021/ja028439+

    55. [55]

      CUI Z M, LIU Q, SONG W G, WAN L J. Insights into the mechanism of methanol-to-olefin conversion at zeolites with systematically selected framework structures[J]. Angew Chem Int Ed, 2006,45(39):6512-6515. doi: 10.1002/(ISSN)1521-3773

    56. [56]

      ILIAS S, BHAN A. Mechanism of the catalytic conversion of methanol to hydrocarbons[J]. ACS Catal, 2013,44(3):18-31.  

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    4. [4]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    5. [5]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    6. [6]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    7. [7]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    8. [8]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    9. [9]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    10. [10]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    11. [11]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    12. [12]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    13. [13]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    14. [14]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

    15. [15]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    16. [16]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    17. [17]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    18. [18]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    19. [19]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    20. [20]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

Metrics
  • PDF Downloads(7)
  • Abstract views(462)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return