Citation: Wang Baoli. Reactions of Complexes and Carbon Monoxide[J]. Chemistry, ;2020, 83(4): 296-307. shu

Reactions of Complexes and Carbon Monoxide

  • Received Date: 12 December 2019
    Accepted Date: 15 January 2020

Figures(40)

  • Carbon monoxide is an important feedstock in the development of a sustainable chemical economy. We hope to produce high value-added chemicals catalytically from carbon monoxide to reduce the ties to fossil fuels, such as petroleum. Studies on the reactions of homogeneous complexes and carbon monoxide could help us understand the principle of the transformation and utilization of carbon monoxide, and develop new catalysts to exploit carbon monoxide resource. In this review, the reactions of various kinds of complexes and carbon monoxide were discussed based on the reactive site of complexes to make us learn the fundamental principle of reactivities of carbon monoxide at the molecular level. The hard issues were also summarized in the hope of more researchers might be engaging in this fields to achieve the production of more chemicals using carbon monoxide.
  • 加载中
    1. [1]

      Master C. Adv. Organomet. Chem., 1979, 17:61~103. 

    2. [2]

      Ancillotti F, Fattore V. Fuel Process. Technol., 1998, 57:163~194. 

    3. [3]

      Overett M J, Hill R O, Moss J R. Coord. Chem. Rev., 2000, 206~207:581~605. 

    4. [4]

      Maitlis P M. J. Organomet. Chem., 2004, 689:4366~4374. 

    5. [5]

      van de Loosdrecht J, Botes F, Ciobica I, et al. In Comprehensive Inorganic Chemistry II; J Reedijk, K Poeppelmeier, Eds.; Elsevier: Oxford, 2013; 525~557.

    6. [6]

      Kalescky R, Kraka E, Cremer D. J. Phys. Chem. A, 2013, 117:8981~8995. 

    7. [7]

      Marks T J. Science, 1982, 217:989~997. 

    8. [8]

      Arnold P L, Turner Z R. Nat. Rev. Chem., 2017, 1:0002. 

    9. [9]

      Gardner B M, Liddle S T. Eur. J. Inorg. Chem., 2013, 3753~3770.

    10. [10]

      Kahn B E, Rieke R D. Chem. Rev., 1988, 88:733~745. 

    11. [11]

      West N M, Miller A J, Labinger J A, et al. Coord. Chem. Rev., 2011, 255:881~898. 

    12. [12]

      Khodakov A Y, Chu W, Fongarland P. Chem. Rev., 2007, 107:1692~1744. 

    13. [13]

      Evans W J, Grate J W, Hughes L A, et al. J. Am. Chem. Soc., 1985, 107:3728~3730. 

    14. [14]

      Arnold P L, Turner Z R, Bellabarba R M, et al. Chem. Sci., 2011, 2:77~79. 

    15. [15]

      Mansell S M, Kaltsoyannis N, Arnold P L. J. Am. Chem. Soc., 2011, 133:9036~9051. 

    16. [16]

      Gardner B M, Stewart J C, Davis A L, et al. PNAS, 2012, 109:9265~9270. 

    17. [17]

      Castro-Rodriguez I, Meyer K. J. Am. Chem. Soc., 2005, 127:11242~11243. 

    18. [18]

      Frey A S, Cloke F G N, Hitchcock P B, et al. J. Am. Chem. Soc., 2008, 130:13816~13817. 

    19. [19]

      Summerscales O T, Cloke F G N, Hitchcock P B, et al. Science, 2006, 311:829~831.

    20. [20]

      Summerscales O T, Cloke F G N, Hitchcock P B, et al. J. Am. Chem. Soc., 2006, 128:9602~9603. 

    21. [21]

      Yuvaraj K, Douari I, Paparo A, et al. J. Am. Chem. Soc., 2019, 141:8764~8768. 

    22. [22]

      Kong R Y, Crimmin M R. J. Am. Chem. Soc., 2018, 140:13614~13617. 

    23. [23]

      Evans W J, Forrestal K J, Ziller J W. J. Am. Chem. Soc., 1995, 117:12635~12636. 

    24. [24]

      Evans W J, Kozimor S A, Nyce G W, et al. J. Am. Chem. Soc., 2003, 125:13831~13835. 

    25. [25]

      Fagan P J, Manriquez J M, Marks T J. J. Am. Chem. Soc., 1980, 102:5393~5396. 

    26. [26]

      Watanabe T, Ishida Y, Matsuo T, et al. J. Am. Chem. Soc., 2009, 131:3474~3475. 

    27. [27]

      Gómez M, Gómez-Sal P, Jiménez G, et al. Organometallics, 1996, 15:3579~3587. 

    28. [28]

      Wang X, Zhu Z, Peng Y, et al. J. Am. Chem. Soc., 2009, 131:6912~6913. 

    29. [29]

      Radu N S, Engeler M P, Gerlach C P, et al. J. Am. Chem. Soc., 1995, 117:3621~3622. 

    30. [30]

      Arnold J, Tilley T D. J. Am. Chem. Soc., 1985, 107:6409~6410. 

    31. [31]

      Kratish Y, Pinchuk D, Kaushansky A, et al. Angew. Chem. Int. Ed., 2019, 58:18849~18853. 

    32. [32]

      Evans W J, Lee D S, Ziller J W, et al. J. Am. Chem. Soc., 2006, 128:14176~14184. 

    33. [33]

      Fagan P J, Manriquez J M, Vollmer S H, et al. J. Am. Chem. Soc., 1981, 103:2206~2220. 

    34. [34]

      Cleaves P A, King D M, Kefalidis C E, et al. Angew. Chem. Int. Ed., 2014, 53:10412~10415. 

    35. [35]

      Falcone M, Kefalidis C E, Scopelliti R, et al. Angew. Chem. Int. Ed., 2016, 55:12290~12294. 

    36. [36]

      Anker M D, Kefalidis C E, Yang Y, et al. J. Am. Chem. Soc., 2017, 139:10036~10054. 

    37. [37]

      Knobloch D J, Lobkovsky E, Chirik P J. Nat. Chem., 2010, 2:30~35. 

    38. [38]

      Semproni S P, Chirik P J. J. Am. Chem. Soc., 2013, 135:11373~11383. 

    39. [39]

      Ramler J, Poater J, Hirsch F, et al. Chem. Sci., 2019, 10:4169~4176. 

    40. [40]

      Lv Y, Kefalidis C E, Zhou J, et al. J. Am. Chem. Soc., 2013, 135:14784~14796. 

    41. [41]

      Vilanova S P, del Rosal I, Tarlton M L, et al. Angew. Chem. Int. Ed., 2018, 57:16748~6753. 

    42. [42]

      Castro L, So Y-M, Cho C-W, et al. Chem. Eur. J., 2019, 25:10834~10839. 

    43. [43]

      So Y-M, Wang G-C, Li Y. Angew. Chem. Int. Ed., 2014, 53:1626~1629. 

    44. [44]

      Hartmann N J, Wu G, Hayton T W. J. Am. Chem. Soc., 2016, 138:12352~12355. 

    45. [45]

      Lu W, Hu H, Li Y, et al. J. Am. Chem. Soc., 2016, 138:6650~6661. 

    46. [46]

      Li S, Cheng J, Chen Y, et al. Angew. Chem. Int. Ed., 2011, 50:6360~6363. 

    47. [47]

      Wang B, Kang X, Nishiura M, et al. Chem. Sci., 2016, 7:803~809. 

    48. [48]

      Wang B, Luo G, Nishiura M, et al. J. Am. Chem. Soc., 2017, 139:16967~16973. 

    49. [49]

      Cheng J, Ferguson M J, Takats J. J. Am. Chem. Soc., 2010, 132:2~3. 

    50. [50]

      Shima T, Hou Z. J. Am. Chem. Soc., 2006, 128:8124~8125. 

    51. [51]

      Werkema E L, Maron L, Eisenstein O, et al. J. Am. Chem. Soc., 2007, 129:2529~2541. 

    52. [52]

      Lalrempuia R, Kefalidis C E, Bonyhady S J, et al. J. Am. Chem. Soc., 2015, 137:8944~8947. 

    53. [53]

      Shi X, Hou C, Zhou C, et al. Angew. Chem. Int. Ed., 2017, 56:16650~16653 

    54. [54]

      Wolczanski P T, Bercaw J E. Acc. Chem. Res., 1980, 13:121~127. 

    55. [55]

      Ballmann J, Pick F, Castro L, et al. Organometallics, 2012, 31:8516~8524. 

  • 加载中
    1. [1]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    4. [4]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    5. [5]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

    14. [14]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    15. [15]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(41)
  • Abstract views(2906)
  • HTML views(782)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return