Highly coke-resistant ordered mesoporous Ni/SiC with large surface areas in CO2 reforming of CH4
- Corresponding author: HUANG Xin, huangxin@sxicc.ac.cn ZHAO Ning, zhaoning@sxicc.ac.cn
Citation:
ZHAN Hai-juan, SHI Xiao-yan, HUANG Xin, ZHAO Ning. Highly coke-resistant ordered mesoporous Ni/SiC with large surface areas in CO2 reforming of CH4[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(8): 942-948.
DEVENDRA P, JAMES S. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chem Soc Rev, 2014,43(22):7813-7837. doi: 10.1039/C3CS60395D
SUN N N, WEN X, WANG F, WEI W, SUN Y H. Effect of pore structure on Ni catalyst for CO2 reforming of CH4[J]. Energy Environ Sci, 2010,3(3):366-369. doi: 10.1039/b925503f
HUANG X, XUE G X, WANG C Z, ZHAO N, SUN N N, WEI W, SUN Y H. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts for CO2 reforming of methane:Effect of Ni embedding and Y2O3 promotion[J]. Catal Sci Technol, 2016,6(2):449-459. doi: 10.1039/C5CY01171J
LI S R, GONG J L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chem Soc Rev, 2014,43(21):7245-7256. doi: 10.1039/C4CS00223G
KAWI S, KATHIRASER Y, NI J, OEMAR U, LI Z W, SAW E T. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane[J]. ChemSusChem, 2015,8(21):3556-3575. doi: 10.1002/cssc.201500390
ROSTRUP-NIELSEN J R, HANSEN J H B. CO2 reforming of methane over transition metals[J]. J Catal, 1993,144(1):38-49.
HUANG X, JI C C, WANG C Z, XIAO F K, ZHAO N, SUN N N, WEI W, SUN Y H. Ordered mesoporous CoO-NiO-Al2O3 bimetallic catalysts with dual confinement effects for CO2 reforming of CH4[J]. Catal Today, 2017,281:241-249. doi: 10.1016/j.cattod.2016.02.064
KIM J, SUH D J, PARK T, KIM K. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Appl Catal A:Gen, 2000,197(2):191-200. doi: 10.1016/S0926-860X(99)00487-1
TIAN H, LI X Y, ZENG L, GONG J L. Recent advances on the design of group Ⅷ base-metal catalysts with encapsulated structures[J]. ACS Catal, 2015,5(8):4959-4977. doi: 10.1021/acscatal.5b01221
LI H T, QIU Y, WANG C Z, HUANG X, XIAO T C, ZHAO Y X. Nickel catalysts supported on ordered mesoporous SiC materials for CO2 reforming of methane[J]. Catal Today, 2018,317:76-85. doi: 10.1016/j.cattod.2018.02.038
LIU H T, LI S Q, ZHANG S B, WANG J M, WANG J M, ZHOU G J, CHEM G J, CHEM L, WANG X L. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas[J]. Catal Commun, 2008,9(1):51-54.
LIU H T, LI S Q, ZHANG S B, CHEN L, ZHOU G J, WANG J M, WANG X L. Catalytic performance of monolithic foam Ni/SiC catalyst in carbon dioxide reforming of methane to synthesis gas[J]. Catal Lett, 2008,120(1/2):111-115.
GUO Peng-fei, JIN Guo-qiang, GUO Cong-xiu, WANG Ying-yong, TONG Xi-li, GUO Xiang-yun. Effects of Yb2O3 promoter on the performance of Ni/SiC catalysts in CO2 reforming of CH4[J]. J Fuel Chem Technol, 2014,42(6):719-726.
WANG Bing, GUO Cong-xiu, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Performance of Ni-Smx/SiC catalysts for CO2 reforming of CH4[J]. J Fuel Chem Technol, 2016,44(5):587-596. doi: 10.3969/j.issn.0253-2409.2016.05.011
SHI Y F, MENG Y, CHEN D H, CHENG S J, CHEN P, YANG T F, WAN Y, ZHAO D Y. Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability[J]. Adv Funct Mater, 2006,16(4):561-567. doi: 10.1002/(ISSN)1616-3028
JIN G Q, GUO X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous Mesoporous Mater, 2003,60(1/3):207-212.
WANG C Z, SUN N N, ZHAO N, WEI W, ZHANG J, ZHAO T J, SUN Y H, SUN C G, LIU H, SNAPE C. The properties of individual carbon residuals and their influence on the deactivation of Ni-CaO-ZrO2 catalysts in CH4 dry reforming[J]. ChemCatChem, 2014,6(2):640-648. doi: 10.1002/cctc.v6.2
HOFFMANN C, PLATE P, STEINBRUCK A, KASKEL S. Nanoporous silicon carbide as nickel support for the carbon dioxide reforming of methane[J]. Catal Sci Technol, 2015,5(8):4174-4183. doi: 10.1039/C4CY01234H
SING K S, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985,57(4):603-619. doi: 10.1351/pac198557040603
XU L L, SONG H L, CHOU L J. One-pot synthesis of ordered mesoporous NiO-CaO-Al2O3 composite oxides for catalyzing CO2 reforming of CH4[J]. ACS Catal, 2012,2(7):1331-1342. doi: 10.1021/cs3001072
WANG C Z, SUN N N, ZHAO N, WEI W, SUN Y H, SUN C G, LIU H, SNAPE C. Coking and deactivation of a mesoporous Ni-CaO-ZrO2 catalyst in dry reforming of methane:A study under different feeding compositions[J]. Fuel, 2015,143:527-535. doi: 10.1016/j.fuel.2014.11.097
HUANG X, JIAO X, LIN M G, WANG K, JIA L T, HOU B, LI D B. Coke distribution determines the lifespan of a hollow Mo/HZSM-5 capsule catalyst in CH4 dehydroaromatization[J]. Catal Sci Technol, 2018,8(22):5740-5749. doi: 10.1039/C8CY01391H
HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bo. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. J Fuel Chem Technol, 2018,46(9):1087-1100. doi: 10.3969/j.issn.0253-2409.2018.09.008
GUO J J, LUO H, ZHENG X M. The deposition of coke from methane on a Ni/MgAl2O4 catalyst[J]. Carbon, 2007,45(6):1314-1321. doi: 10.1016/j.carbon.2007.01.011
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
.
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205
Hong Yan , Wenfeng Wang , Keyin Ye , Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
(reaction condition: 700 ℃, 1.013×105 Pa, CH4:CO2=1 and GHSV=12 L/(h·g))
(reaction condition: 700 ℃, 1.013×105 Pa, CH4:CO2 = 1 and GHSV = 12 L/(h·g))
(●: β-SiC; ◆: Ni; ▲: NiO; ■: graphite carbon)