Citation: Ren Qing, Bian Mingyuan, Chen Feiwu. Surface Adsorption of Liquids: A Theoretical Study on Surface Phase Thickness and Heat Effects[J]. Chemistry, ;2019, 82(3): 237-242. shu

Surface Adsorption of Liquids: A Theoretical Study on Surface Phase Thickness and Heat Effects

  • Corresponding author: Chen Feiwu, chenfeiwu@ustb.edu.cn
  • Received Date: 15 December 2018
    Accepted Date: 15 January 2018

Figures(8)

  • In this article the relationship between the surface tension and temperature for six pure liquids were studied quantitatively, and the heat released by the phase transition of these liquids from bulk to surface has been further predicted. We elucidate that the fundamental cause of exothermicity is that the entropy is reduced due to that molecules are arranged in a more ordered way in the surface phase. The relationships between the surface tension and concentrations of CaCl2 and K2CO3 aqueous solutions were also investigated and the simulated results were in very close agreement with the experimental data. Meanwhile, we also estimated the surface layer thickness of 16 strong electrolyte solutions at given β values, and a theoretical explanation for the phenomenon of the surface layer thickening of solutions was given.
  • 加载中
    1. [1]

      J W Gibbs. The Collected Works of J. Willard Gibbs, New York:Longmans, Green and Co, 1928.

    2. [2]

      F M Menger, L Shi, S A A Rizvi. J. Am. Chem. Soc., 2009, 131:10380~10381. 

    3. [3]

      F M Menger, S A A Rizvi. Langmuir, 2011, 27:13975~13977. 

    4. [4]

      F M Menger, L Shi, S A A Rizvi. Langmuir, 2009, 26:1588~1589.

    5. [5]

      J Laven, G de With. Langmuir, 2011, 27:7958~7962. 

    6. [6]

      F M Menger, S A A Rizvi, L Shi. Langmuir, 2011, 27:7963~7965. 

    7. [7]

      I Mukherjee, S P Moulik, A K Rakshit. J. Colloid Interf. Sci., 2013, 394:329~336. 

    8. [8]

      P X Li, Z X Li, H H Shen et al. Langmuir, 2013, 29:9324~9334. 

    9. [9]

      H Xu, P X Li, K Ma et al. Langmuir, 2013, 29:9335~9351. 

    10. [10]

      P X Li, R K Thomas, J Penfold. Langmuir, 2014, 30:6739~6747. 

    11. [11]

      K D Danov, R D Stanimirova, P A Kralchevsky et al. J. Colloid Interf. Sci., 2015, 457:307~318. 

    12. [12]

      H Xu, P Li, K Ma et al. Langmuir, 2017, 33:9944~9953. 

    13. [13]

      C J Radke. Adv. Colloid Interf. Sci., 2015, 222:600~614. 

    14. [14]

      S Nath. J. Colloid Interf. Sci. 1999, 209:116~122. 

    15. [15]

      Z B Li, Y G Li, J F Lu. Ind. Eng. Chem. Res., 1999, 38:1133~1139. 

    16. [16]

      Y X Yu, G H Gao, Y G Li. Fluid Phase Equilibr., 2000, 173:23~38. 

    17. [17]

      Y Levin, A P Dos Santos, A Diehl. Phys. Rev. Lett., 2009, 103:257802. 

    18. [18]

       

    19. [19]

      R Wang, Z G Wang. J. Chem. Phys., 2016, 144:134902. 

    20. [20]

      A Casandra, R Y Tsay, C M Phan et al. Colloid. Surf. A, 2017, 512:137~144. 

    21. [21]

      F W Chen, Q Ren. Chem. Phys. Lett., 2017, 685:438~441. 

    22. [22]

    23. [23]

      B Xin, J Hao. Chem. Soc. Rev., 2014, 43:7171~7187. 

    24. [24]

       

    25. [25]

      V I Petrenko, M V Avdeev, V M Garamus et al. Colloid. Surf. A, 2015, 480:191~196. 

    26. [26]

      H F Wang, L Velarde, W Gan et al. Annu. Rev. Phys. Chem., 2015, 66:189~216. 

    27. [27]

      K Lv, L Lin, X Wang et al. J. Phys. Chem. Lett., 2015, 6:1719~1723. 

    28. [28]

      S L Chen, L Fu, W Gan et al. J. Chem. Phys., 2016, 144:034704. 

    29. [29]

      C X He, H Zhang, C G Lin et al. Chem. Phys. Lett., 2017, 676:144~149. 

    30. [30]

       

    31. [31]

      Y Marcus. J. Chem. Eng. Data, 2010, 55:3641~3644. 

    32. [32]

      J Wu, Z Liu, F Wang et al. J. Chem. Eng. Data, 2003, 48:1571~1573. 

    33. [33]

      S Bi, G Zhao, J Wu. J. Chem. Eng. Data, 2010, 55:1523~1526. 

    34. [34]

      W Gao, X Zhao, Z Liu. J. Chem. Eng. Data, 2009, 54:1761~1763. 

    35. [35]

      H Kahl, T Wadewitz, J Winkelmann. J. Chem. Eng. Data, 2003, 48:580~586. 

    36. [36]

      X Zhao, W Duan, X Zeng et al. J. Chem. Eng. Data, 2018, 63:21~26. 

    37. [37]

      E W Washburn. International Critical Tables of Numerical Data, Physics, Chemistry and Technology (Volume 4), 1st electronic edition, Knovel, Norwich, New York, 2003.

    38. [38]

      H F Wang, W Gan, R Lu et al. Int. Rev. Phys. Chem., 2005, 24:191~256. 

  • 加载中
    1. [1]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    2. [2]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    3. [3]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

    4. [4]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    5. [5]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    6. [6]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    7. [7]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    8. [8]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    11. [11]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    12. [12]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    13. [13]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    14. [14]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    15. [15]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    16. [16]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    17. [17]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    18. [18]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    19. [19]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    20. [20]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

Metrics
  • PDF Downloads(4)
  • Abstract views(377)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return