Citation: LIU Xia, PAN Chan-chan, LU Hai-feng, LIANG Qin-feng, GUO Xiao-lei, GONG Xin. Effect of raw coal grindability on the uniformity of pulverized blended coal for entrained-flow pulverized coal gasification[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 287-294. shu

Effect of raw coal grindability on the uniformity of pulverized blended coal for entrained-flow pulverized coal gasification

  • Corresponding author: LIU Xia, lxia@ecust.edu.cn
  • Received Date: 20 October 2015
    Revised Date: 17 December 2015

    Fund Project: Sinopec Scientific and Technological Development Projects 415022

Figures(8)

  • Two pulverized coals taken from an entrained-flow pulverized coal gasification unit at different operating periods were adopted as the experimental materials, which were divided into two groups based on the partical size to investigate the effect of raw coal grindability on the uniformity of pulverized blended coal. The coal quality and the ash character of the subsamples were analyzed as well. The results show that the grindability of raw coal has a great influence on the partical size distribution and the uniformity of pulverized blended coal, and the partical size distribution of blended coal is mainly depended on the raw coal with a smaller grindability index. The smaller the raw coal's grindability index, the larger the particle size of the pulverized blended coal. It is therefore concluded that the pulverized blended coal made from similar grindability raw coals is more uniform. On the other hand, different grindabilities of raw coals lead to nonuniformity and segregation of the pulverized blended coal and induce an accumulation of hard coal in the large particles, which will cause the reactivity of the pulverized blended coal decrease.
  • 加载中
    1. [1]

      YU Zun-hong, WANG Fu-chen. Coal Gasification Technology[M]. Beijing: Chemical Industry Press, 2010.

    2. [2]

      GONG Xin, GUO Xiao-lei, DAI Zheng-hua, YU Zun-hong. The independently innovative gasification technology of pressurized entrained-flow for pulverized coal[J]. Large Scale Nitrogenous Fert Ind, 2005,28(3):155-157.  

    3. [3]

      HE Yong-de. Modern Coal Chemical Technology Handbook[M]. Beijing: Chemical Industry Press, 2011.

    4. [4]

      RILEY J T, GILLELAND S R, FORSYTHE R F, GRAHAM JR H D, HAYES F J. Non-additive analytical values for coal[C]//Proceedings of the seventh international conference on coal testing, Charleston, WV, USA, 1989: 645-649.

    5. [5]

      ZHONG De-hui, QIU Ji-hua. Impact of grinding behavior of blended coals on pulverized fuel combustion character[J]. Power Syst Eng, 2003,19(2):13-14.  

    6. [6]

      HAAS J, TAMURA M, WEBER R. Characterisation of coal blends for pulverised fuel combustion[J]. Fuel, 2001,80:1317-1323. doi: 10.1016/S0016-2361(00)00216-7

    7. [7]

      LIU Jing-yan, WANG Chang-an, ZHANG Xiao-ming, SUN Yun, CHE De-fu. Investigation on coal properties and combust ion characteristics of blended coals[J]. Boiler Technol, 2012,43(2):37-42, 46.  

    8. [8]

      ZHANG Long, HUANG Zhen-yu, SHEN Ming-ke, WANG Zhi-hua, ZHOU Jun-hu. Effect of different regulative methods on coal ash fusion characteristics[J]. J Fuel Chem Technol, 2015,43(2):145-152.  

    9. [9]

      WU Xiao-jiang, ZHANG Zhong-xiao, ZHOU Tuo, CHEN Yu-shuang, CHEN Guo-yan, LU Cheng, HUANG Feng-bao. Ash Fusion Characteristics and M ineral Evolvement of Biended Ash Under Gasification Condition[J]. J Combust Sci Technol, 2010,16(6):508-514.  

    10. [10]

      HAO Yong-cai. A study on optimal component ratio of coal blending based on coal quality characteristics analysis[D]. Wuhan: Huazhong University of Science & Technology, 2008.

    11. [11]

      JIE Wei-wei. Coal Chemistry and Coal Quality Analysis[M]. Beijing: Metallurgical Industry Press, 2012.

    12. [12]

      TAKAYUKI T, YASUKATSU T, AKIRA T. Reactivities of 34 coals under steam gasification[J]. Fuel, 1985,64(10):1438-1442. doi: 10.1016/0016-2361(85)90347-3

    13. [13]

      WANG Yu-lei, WANG Qing-wen, JIA Jian-wen, WAN Jin-feng. The experimental study of the HGI of blended coals[J]. Energy Conserv Technol, 2012,30(2):179-181.  

    14. [14]

      JIANG Xiu-min, LI Ju-bin, QIU Jian-rong. The influence of particle size on compositions analyzing and combustion characteristics of pulverized coal[J]. J China Coal Soc, 1999,24(6):643-647.  

    15. [15]

      ZHANG Jian-zhong. Discussion on the determination method of the grindability of blended coal and the determination method of the output reduction coefficient of high ash coal in the coal mill[J]. Heat Power Technics, 2001,1:27-31.  

    16. [16]

      LIU Zhong, YAN Wei-ping, GAO Zheng-yang, ZHAO Li. Dependence of coal compositions on micro-pulverized coal fmeness[J]. J North China Electr Power Univ, 2004,31(4):63-65.  

    17. [17]

      ZHANG De-xiang, LONG Yong-hua, GAO Jin-sheng. Relationship between the coal ash fusibility and its chemical composition[J]. J East China Univ Sci Technol, 2003,29(6):590-594.  

    18. [18]

      XU Jie, LIU Xia, LI De-xia, ZHOU Zhi-jie, WANG Fu-chen, YU Guang-suo. Prediction model for flow temperature of coal ash[J]. J Fuel Chem Technol, 2012,40(12):1415-1429.  

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    3. [3]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    4. [4]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    5. [5]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    6. [6]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    7. [7]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    8. [8]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    9. [9]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    10. [10]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    15. [15]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    16. [16]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

Metrics
  • PDF Downloads(0)
  • Abstract views(592)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return