Citation: CHEN Zhao-hui, LIU Lei, WU Heng, PEI Zeng-kai, ZHAN Yue-ping, LI Ke-zhong, ZHENG Yan, WU Li-feng, BI Ji-cheng. Effect of Ca(OH)2 catalyst on catalytic coal gasification and methanation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1160-1167. shu

Effect of Ca(OH)2 catalyst on catalytic coal gasification and methanation

  • Corresponding author: LI Ke-zhong, nyyjy@enn.cn
  • Received Date: 12 May 2016
    Revised Date: 12 July 2016

Figures(11)

  • The catalytic gasification performance of Buliangou coal using Ca(OH)2 as catalyst was investigated at 3.5 MPa and 700-800℃ in a pressurized fixed bed. The effect of gasification temperature, Ca(OH)2 loading and loading method on coal steam gasification and methanation reaction were examined. The results show that Ca(OH)2 can enhance the reactivity of char gasification and the formation of CH4. Increasing temperature and Ca(OH)2 loading can heighten the carbon conversion, but Ca(OH)2 loading possesses a saturation point. The gasification reactivity is affected by loading method which determines the Ca(OH)2 dispersion. The coal char loaded with Ca(OH)2 shows a great catalytic activity on methanation reaction and the CH4 content in the product gas increases with the increase of methanation temperature and catalyst loading. The analysis result of coal surface function groups by FT-IR reveals the dispersion mechanism of Ca(OH)2 into the matrix of coal through ion exchange and diffusion, which is a key factor to improve coal char gasification reactivity.
  • 加载中
    1. [1]

      CHEN Yu-shuang, ZHANG Zhong-xiao, WU Xiao-jiang, LI Jie, GUAN Rong-qing, YAN Bo. Quantum chemistry calculation and experimental study on coal ash fusion characteristics of blend coal[J]. J Fuel Chem Technol, 2009,37(5):521-526.  

    2. [2]

      HIRSCH R L, GALLAGHER J E, LESSARD R R, WESSELHOFT R D. Catalytic coal gasification:An emerging technology[J]. Science, 1982,215(4529):121-127. doi: 10.1126/science.215.4529.121

    3. [3]

      GreatPoint Energy, Hydromethanation via Bluegas Technology[DB].<http://www.greatpointenergy.com/about.php>

    4. [4]

      LI W W, LI K Z, QU X, ZHANG R, BI J C. Simulation of catalytic coal gasification in a pressurized jetting fluidized bed:Effects of operating conditions[J]. Fuel Process Technol, 2014,126:504-512. doi: 10.1016/j.fuproc.2014.06.006

    5. [5]

      GALLGHER J E, EUKER C A. Catalytic coal gasification for SNG manufacture[J]. Energy Res, 1980,4:137-147. doi: 10.1002/(ISSN)1099-114X

    6. [6]

      FORMELLA K, LEONHARDT P, SULIMMA A, VAN HEEK K H, JVNTGEN H. Interaction of mineral matter in coal with potassium during gasification[J]. Fuel, 1986,65(10):1470-1472. doi: 10.1016/0016-2361(86)90126-2

    7. [7]

      BL SING M, MVLLER M. Investigations on the influence of steam on the release of sodium, potassium, chlorine, and sulphur species during high temperature gasification of coal[J]. Fuel, 2012,94:137-143. doi: 10.1016/j.fuel.2011.11.052

    8. [8]

      MAO Yan-dong, JIN Ya-dan, WANG Hui-fang, ZHENG Yan, LI Ke-zhong, BI Ji-cheng, LI Jin-lai, XIN Feng. Experimental research on corrosions of corundum refractory by alkali metals in catalytic coal gasification process[J]. J Fuel Chem Technol, 2014,42(11):1332-1339.  

    9. [9]

      OHTSUKA Y, TOMITA A. Calcium catalysed steam gasification of Yallourn brown coal[J]. Fuel, 1986,65(12):1653-1657. doi: 10.1016/0016-2361(86)90264-4

    10. [10]

      OHTSUKA Y, ASAMI K. Steam gasification of coals with calcium hydroxide[J]. Energy Fuels, 1995,9(6):1038-1042. doi: 10.1021/ef00054a016

    11. [11]

      ZHANG Y, ASHIZAWA M, KAJITANI S. Calcium loading during the dewatering of wet biomass in kerosene and catalytic activity for subsequent char gasification[J]. Fuel, 2008,87(13/14):3024-3030.

    12. [12]

      ZHANG Y, ASHIZAWA M, KAJITANI S, HARA S. A new approach to catalytic coal gasification:The recovery and reuse of calcium using biomass derived crude vinegars[J]. Fuel, 2010,89(2):417-422. doi: 10.1016/j.fuel.2009.07.009

    13. [13]

      OTTO K, BARTOSIEWICZ L, SHELEF M. Effects of calcium, strontium, and barium as catalysts and sulphur scavengers in the steam gasification of coal chars[J]. Fuel, 1979,58(8):565-572. doi: 10.1016/0016-2361(79)90004-8

    14. [14]

      RADOVIC L R, WALKER P L, JENKINS R G. Importance of catalyst dispersion in the gasification of lignite chars[J]. J Catal, 1983,82(2):382-394. doi: 10.1016/0021-9517(83)90205-1

    15. [15]

      RADOVIC L A.Catalysis in Coal and Carbon Gasification[C]//Handbook of heterogeneous catalysis.Weinheim:Wiley-VCH Verlag GmbH&Co.KGa A.2008, 3040.

    16. [16]

      ZHAO Ming-ju, XIE Ke-chang, LING Da-qi. Effect of coal mineral on coal gasification[J]. Coal Convers, 1989,1:23-19.  

    17. [17]

      CORELLA J, TOLEDO J M, MOLINA G. Steam gasification of coal at low-medium (600-800℃) temperature with simultaneous CO2 capture in fluidized bed at atmospheric pressure:The effect of inorganic species.1.literature review and comments[J]. Ind Eng Chem Res, 2006,45(18):6137-6146. doi: 10.1021/ie0602658

    18. [18]

      SPIRO C L, MCKEE D W, KOSKY P G, LAMBY E J. Observation of alkali catalyst particles during gasification of carbonaceous materials in CO2 and steam[J]. Fuel, 1984,63(5):686-691. doi: 10.1016/0016-2361(84)90167-4

    19. [19]

      MATSUKATA M, KIKUCHI E, MORITA Y. A new classification of alkali and alkaline earth catalysts for gasification of carbon[J]. Fuel, 1992,71(7):819-823. doi: 10.1016/0016-2361(92)90136-C

    20. [20]

      LIN S Y, HARADA M, SUZUKI Y, HATANO H. Continuous experiment regarding hydrogen production by Coal/CaO reaction with steam (I) gas products[J]. Fuel, 2004,83(7/8):869-874.

    21. [21]

      LIN S Y, HARADA M, SUZUKI Y, HATANO H. Continuous experiment regarding hydrogen production by Coal/CaO reaction with steam (Ⅱ) solid formation[J]. Fuel, 2006,85(7/8):1143-1150.

    22. [22]

      NAHAS N C. Exxon catalytic coal gasification process:Fundamentals to flowsheets[J]. Fuel, 1983,62(2):239-241. doi: 10.1016/0016-2361(83)90207-7

    23. [23]

      OTAKE T, TONE S, KIMURA S, HINO Y. Methane formation over potassium carbonate catalyst loaded on coal char[J]. J Chem Eng Japan, 1984,17(5):503-507. doi: 10.1252/jcej.17.503

    24. [24]

      MEIJER R, VAN DOORN R, KAPTEIJN F, MOULIJN J A. Methane formation in H2, CO mixtures over carbon-supported potassium carbonate[J]. J Catal, 1992,134(2):525-535. doi: 10.1016/0021-9517(92)90339-J

    25. [25]

      FAN Li-xia, LI Ke-zhong, ZHANG Rong, BI Ji-cheng. Methanation of CO over coal char loaded with K2CO3[J]. J Fuel Chem Technol, 2014,42(9):1047-1052.  

    26. [26]

      CASANOVA R, CABRERA A L, HEINEMANN H, SOMORJAI G A. Calcium oxide and potassium hydroxide catalysed low temperature methane production from graphite and water comparison of catalytic mechanisms[J]. Fuel, 1983,62(10):1138-1144. doi: 10.1016/0016-2361(83)90053-4

    27. [27]

      ZHENG Qing-rong, ZENG Fan-gui, ZHANG Shi-tong. FT-IR study on structure evolution of middle maturate coals[J]. J China Coal Soc, 2011,36(3):481-486.  

    28. [28]

      OHTSUKA Y, ASAMI K. Ion-exchanged calcium from calcium carbonate and low-rank coals:High catalytic activity in steam gasification[J]. Energy Fuels, 1996,10(2):431-435. doi: 10.1021/ef950174f

    29. [29]

      OHTSUKA Y, ASARNI K. Highly active catalysts from inexpensive raw materials for coal gasification[J]. Catal Today, 1997,39(1/2):111-125.

    30. [30]

      ILLáN-GóMEZ M J, GARCíA-GARCíA A, LECEA C, LINARES-SOLANO A. Activated carbons from spanish coals.2.Chemical activation[J]. Energy Fuels, 1996,10(5):1108-1114. doi: 10.1021/ef950195+

  • 加载中
    1. [1]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    2. [2]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Yutong Liu Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018

    6. [6]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    7. [7]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    8. [8]

      Xin ZhouYiting HuoSongyu YangBowen HeXiaojing WangZhen WuJianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160

    9. [9]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    10. [10]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    11. [11]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    12. [12]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    13. [13]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    14. [14]

      Chongbei WuBenzhi WangXuan LiJiaxuan GuYihan WuZhe ZhaoPengfei JiaJizhou Jiang . Dual activation pathways based on OH-functionalized alk-Ti3C2 MXene/RuOx boosting the hydrogen generation. Chinese Chemical Letters, 2025, 36(8): 111162-. doi: 10.1016/j.cclet.2025.111162

    15. [15]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    16. [16]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(4)
  • Abstract views(2551)
  • HTML views(1232)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return