Citation: CHEN Zhao-hui, LIU Lei, WU Heng, PEI Zeng-kai, ZHAN Yue-ping, LI Ke-zhong, ZHENG Yan, WU Li-feng, BI Ji-cheng. Effect of Ca(OH)2 catalyst on catalytic coal gasification and methanation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1160-1167. shu

Effect of Ca(OH)2 catalyst on catalytic coal gasification and methanation

  • Corresponding author: LI Ke-zhong, nyyjy@enn.cn
  • Received Date: 12 May 2016
    Revised Date: 12 July 2016

Figures(11)

  • The catalytic gasification performance of Buliangou coal using Ca(OH)2 as catalyst was investigated at 3.5 MPa and 700-800℃ in a pressurized fixed bed. The effect of gasification temperature, Ca(OH)2 loading and loading method on coal steam gasification and methanation reaction were examined. The results show that Ca(OH)2 can enhance the reactivity of char gasification and the formation of CH4. Increasing temperature and Ca(OH)2 loading can heighten the carbon conversion, but Ca(OH)2 loading possesses a saturation point. The gasification reactivity is affected by loading method which determines the Ca(OH)2 dispersion. The coal char loaded with Ca(OH)2 shows a great catalytic activity on methanation reaction and the CH4 content in the product gas increases with the increase of methanation temperature and catalyst loading. The analysis result of coal surface function groups by FT-IR reveals the dispersion mechanism of Ca(OH)2 into the matrix of coal through ion exchange and diffusion, which is a key factor to improve coal char gasification reactivity.
  • 加载中
    1. [1]

      CHEN Yu-shuang, ZHANG Zhong-xiao, WU Xiao-jiang, LI Jie, GUAN Rong-qing, YAN Bo. Quantum chemistry calculation and experimental study on coal ash fusion characteristics of blend coal[J]. J Fuel Chem Technol, 2009,37(5):521-526.  

    2. [2]

      HIRSCH R L, GALLAGHER J E, LESSARD R R, WESSELHOFT R D. Catalytic coal gasification:An emerging technology[J]. Science, 1982,215(4529):121-127. doi: 10.1126/science.215.4529.121

    3. [3]

      GreatPoint Energy, Hydromethanation via Bluegas Technology[DB].<http://www.greatpointenergy.com/about.php>

    4. [4]

      LI W W, LI K Z, QU X, ZHANG R, BI J C. Simulation of catalytic coal gasification in a pressurized jetting fluidized bed:Effects of operating conditions[J]. Fuel Process Technol, 2014,126:504-512. doi: 10.1016/j.fuproc.2014.06.006

    5. [5]

      GALLGHER J E, EUKER C A. Catalytic coal gasification for SNG manufacture[J]. Energy Res, 1980,4:137-147. doi: 10.1002/(ISSN)1099-114X

    6. [6]

      FORMELLA K, LEONHARDT P, SULIMMA A, VAN HEEK K H, JVNTGEN H. Interaction of mineral matter in coal with potassium during gasification[J]. Fuel, 1986,65(10):1470-1472. doi: 10.1016/0016-2361(86)90126-2

    7. [7]

      BL SING M, MVLLER M. Investigations on the influence of steam on the release of sodium, potassium, chlorine, and sulphur species during high temperature gasification of coal[J]. Fuel, 2012,94:137-143. doi: 10.1016/j.fuel.2011.11.052

    8. [8]

      MAO Yan-dong, JIN Ya-dan, WANG Hui-fang, ZHENG Yan, LI Ke-zhong, BI Ji-cheng, LI Jin-lai, XIN Feng. Experimental research on corrosions of corundum refractory by alkali metals in catalytic coal gasification process[J]. J Fuel Chem Technol, 2014,42(11):1332-1339.  

    9. [9]

      OHTSUKA Y, TOMITA A. Calcium catalysed steam gasification of Yallourn brown coal[J]. Fuel, 1986,65(12):1653-1657. doi: 10.1016/0016-2361(86)90264-4

    10. [10]

      OHTSUKA Y, ASAMI K. Steam gasification of coals with calcium hydroxide[J]. Energy Fuels, 1995,9(6):1038-1042. doi: 10.1021/ef00054a016

    11. [11]

      ZHANG Y, ASHIZAWA M, KAJITANI S. Calcium loading during the dewatering of wet biomass in kerosene and catalytic activity for subsequent char gasification[J]. Fuel, 2008,87(13/14):3024-3030.

    12. [12]

      ZHANG Y, ASHIZAWA M, KAJITANI S, HARA S. A new approach to catalytic coal gasification:The recovery and reuse of calcium using biomass derived crude vinegars[J]. Fuel, 2010,89(2):417-422. doi: 10.1016/j.fuel.2009.07.009

    13. [13]

      OTTO K, BARTOSIEWICZ L, SHELEF M. Effects of calcium, strontium, and barium as catalysts and sulphur scavengers in the steam gasification of coal chars[J]. Fuel, 1979,58(8):565-572. doi: 10.1016/0016-2361(79)90004-8

    14. [14]

      RADOVIC L R, WALKER P L, JENKINS R G. Importance of catalyst dispersion in the gasification of lignite chars[J]. J Catal, 1983,82(2):382-394. doi: 10.1016/0021-9517(83)90205-1

    15. [15]

      RADOVIC L A.Catalysis in Coal and Carbon Gasification[C]//Handbook of heterogeneous catalysis.Weinheim:Wiley-VCH Verlag GmbH&Co.KGa A.2008, 3040.

    16. [16]

      ZHAO Ming-ju, XIE Ke-chang, LING Da-qi. Effect of coal mineral on coal gasification[J]. Coal Convers, 1989,1:23-19.  

    17. [17]

      CORELLA J, TOLEDO J M, MOLINA G. Steam gasification of coal at low-medium (600-800℃) temperature with simultaneous CO2 capture in fluidized bed at atmospheric pressure:The effect of inorganic species.1.literature review and comments[J]. Ind Eng Chem Res, 2006,45(18):6137-6146. doi: 10.1021/ie0602658

    18. [18]

      SPIRO C L, MCKEE D W, KOSKY P G, LAMBY E J. Observation of alkali catalyst particles during gasification of carbonaceous materials in CO2 and steam[J]. Fuel, 1984,63(5):686-691. doi: 10.1016/0016-2361(84)90167-4

    19. [19]

      MATSUKATA M, KIKUCHI E, MORITA Y. A new classification of alkali and alkaline earth catalysts for gasification of carbon[J]. Fuel, 1992,71(7):819-823. doi: 10.1016/0016-2361(92)90136-C

    20. [20]

      LIN S Y, HARADA M, SUZUKI Y, HATANO H. Continuous experiment regarding hydrogen production by Coal/CaO reaction with steam (I) gas products[J]. Fuel, 2004,83(7/8):869-874.

    21. [21]

      LIN S Y, HARADA M, SUZUKI Y, HATANO H. Continuous experiment regarding hydrogen production by Coal/CaO reaction with steam (Ⅱ) solid formation[J]. Fuel, 2006,85(7/8):1143-1150.

    22. [22]

      NAHAS N C. Exxon catalytic coal gasification process:Fundamentals to flowsheets[J]. Fuel, 1983,62(2):239-241. doi: 10.1016/0016-2361(83)90207-7

    23. [23]

      OTAKE T, TONE S, KIMURA S, HINO Y. Methane formation over potassium carbonate catalyst loaded on coal char[J]. J Chem Eng Japan, 1984,17(5):503-507. doi: 10.1252/jcej.17.503

    24. [24]

      MEIJER R, VAN DOORN R, KAPTEIJN F, MOULIJN J A. Methane formation in H2, CO mixtures over carbon-supported potassium carbonate[J]. J Catal, 1992,134(2):525-535. doi: 10.1016/0021-9517(92)90339-J

    25. [25]

      FAN Li-xia, LI Ke-zhong, ZHANG Rong, BI Ji-cheng. Methanation of CO over coal char loaded with K2CO3[J]. J Fuel Chem Technol, 2014,42(9):1047-1052.  

    26. [26]

      CASANOVA R, CABRERA A L, HEINEMANN H, SOMORJAI G A. Calcium oxide and potassium hydroxide catalysed low temperature methane production from graphite and water comparison of catalytic mechanisms[J]. Fuel, 1983,62(10):1138-1144. doi: 10.1016/0016-2361(83)90053-4

    27. [27]

      ZHENG Qing-rong, ZENG Fan-gui, ZHANG Shi-tong. FT-IR study on structure evolution of middle maturate coals[J]. J China Coal Soc, 2011,36(3):481-486.  

    28. [28]

      OHTSUKA Y, ASAMI K. Ion-exchanged calcium from calcium carbonate and low-rank coals:High catalytic activity in steam gasification[J]. Energy Fuels, 1996,10(2):431-435. doi: 10.1021/ef950174f

    29. [29]

      OHTSUKA Y, ASARNI K. Highly active catalysts from inexpensive raw materials for coal gasification[J]. Catal Today, 1997,39(1/2):111-125.

    30. [30]

      ILLáN-GóMEZ M J, GARCíA-GARCíA A, LECEA C, LINARES-SOLANO A. Activated carbons from spanish coals.2.Chemical activation[J]. Energy Fuels, 1996,10(5):1108-1114. doi: 10.1021/ef950195+

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    7. [7]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    15. [15]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(3)
  • Abstract views(2196)
  • HTML views(1150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return