Citation: Liu Donglin, Liu Yingxiang, Li Geng, Ma Yuzhuo, Zeng Qiaolin. Study on 3D-QSAR, Molecular Docking and Molecular Dynamics of HIV-1 Integrase Chain Transfer Inhibitors[J]. Chemistry, ;2019, 82(7): 642-648. shu

Study on 3D-QSAR, Molecular Docking and Molecular Dynamics of HIV-1 Integrase Chain Transfer Inhibitors

  • Corresponding author: Liu Yingxiang, liuyingxiang62@162.com
  • Received Date: 27 February 2019
    Accepted Date: 12 April 2019

Figures(7)

  • In order to obtain highly active, novel integrase strand transfer inhibitors (INSTIs), three-dimensional quantitative structure-activity relationship of 32 naphthyridine INST inhibitors were studied using CoMFA and CoMSIA leading to reliable models. The cross-validation coefficients were q2=0.809 and q2=0.816, the fitting verification coefficients were r2=0.998 and r2=0.981, indicating the predictive ability of the established models. Molecular docking was also performed to investigate the binding mode of small molecule compounds to INSTIs. The binding mode indicated that naphthyridines bind to INSTIs mainly via hydrophobic interactions and hydrogen bonding. Finally, the docking results were further verified by molecular dynamics simulation, and it was found that the binding mode of the docking was consistent with the results obtained by molecular dynamics simulation. The comprehensive models and inferences obtained in this study can provide an important theoretical information for the development of new and effective HIV INSTIs.
  • 加载中
    1. [1]

      V Summa, A Petrocchi, F Bonelli et al. J. Med. Chem., 2008, 51(18): 5843~5855. 

    2. [2]

      J F Mouscadet, O Delelis, A G Marcelin et al. Drug Resist. Updat., 2010, 13(4~5): 139~150.

    3. [3]

      T Masuda. Front. Microbiol., 2011, 2(1): 1~5.

    4. [4]

      X Fan, F H Zhang, R I Al-Safi et al. Bioorg. Med. Chem., 2011, 19(16): 4935~4952. 

    5. [5]

      R Dolezal, J Korabecny, D Malinak et al. J. Mol. Graph. Model., 2015, 56: 113~129. 

    6. [6]

      X Z Zhao, S J Smith, D P Maskell et al. J. Med. Chem., 2017, 60(17): 7315~7332. 

    7. [7]

      G W A Milne. Chem. Inf. Model., 2010, 50(11): 2053~2053. 

    8. [8]

      S Goyal, S Grover, J K Dhanjal et al. J. Mol. Graph. Model., 2014, 51: 64~72. 

    9. [9]

      R D I Cramer, D E Patterson, J D Bunce. J. Am. Chem. Soc., 1988, 110(18): 5959~5967. 

    10. [10]

      G Klebe, U Abraham, T Mietzner. J. Med. Chem., 1994, 37(24): 4130~4146. 

    11. [11]

       

    12. [12]

      J Caballero. J. Mol. Graph. Model., 2010, 29(3): 363~371. 

    13. [13]

       

    14. [14]

       

    15. [15]

      A Brooun, K S Gajiwala, Y L Deng et al. Nat. Commun., 2016, 7: 11384. 

    16. [16]

      X Q Yan, Z C Wang, Z Li et al. Bioorg. Med. Chem. Lett., 2015, 25(20): 4664~4671. 

    17. [17]

      A W Schüttelkopf, D M F Van Aalten. Acta. Crystallogr. D, 2004, 60(8): 1355~1363. 

    18. [18]

      C Oostenbrink, A Villa, A E Mark et al. J. Comput. Chem., 2004, 25(13): 1656~1676. 

    19. [19]

      P Padma Kumar, A G Kalinichev, R J Kirkpatrick et al. J. Phys. Chem B, 2006, 110(9): 3841~3844. 

    20. [20]

      B Hess, H Bekker, H J C Berendsen et al. J. Chem. Theory Comput., 2008, 4(1): 1463~1472.

    21. [21]

    22. [22]

      S Cao. J. Mol. Struct., 2012, 1020(8): 167~176.

  • 加载中
    1. [1]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    9. [9]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    10. [10]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    13. [13]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    14. [14]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    15. [15]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    16. [16]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    17. [17]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    18. [18]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

Metrics
  • PDF Downloads(16)
  • Abstract views(1458)
  • HTML views(256)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return